Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 30;365(2):162-73.
doi: 10.1016/j.mce.2012.10.016. Epub 2012 Oct 30.

Damaged spermatogenic cells induce inflammatory gene expression in mouse Sertoli cells through the activation of Toll-like receptors 2 and 4

Affiliations

Damaged spermatogenic cells induce inflammatory gene expression in mouse Sertoli cells through the activation of Toll-like receptors 2 and 4

Xiaoyan Zhang et al. Mol Cell Endocrinol. .

Abstract

Testicular inflammation, including noninfectious inflammatory responses in the testis, may impair male fertility. Mechanisms underlying the initiation of noninfectious testicular inflammation are poorly understood. In the current study, we demonstrate that damaged spermatogenic cell products (DSCPs) induce expression of various inflammatory mediators, including TNF-α, IL-1β, IL-6, and macrophage chemotactic protein 1 (MCP-1), in Sertoli cells. Notably, the DSCP-induced inflammatory gene expression was significantly reduced by knockout Toll-like receptor (TLR)2 or TLR4, and abolished by double knockout TLR2 and TLR4 (TLR2(-/-)TLR4(-/-)). MCP-1 secreted by Sertoli cells after stimulation with DSCPs promotes macrophage migration. We also provide evidence that busulfan-induced spermatogenic cell damages in vivo upregulate TNF-α and MCP-1 expression in Sertoli cells, and facilitate macrophage infiltration into the testis in wild-type mice. These phenomena were not observed in TLR2(-/-)TLR4(-/-) mice. Data indicate that DSCPs induce inflammatory gene expression in Sertoli cells via the activation of TLR2 and TLR4, which may initiate noninfectious inflammatory responses in the testis. The results provide novel insights into the mechanisms underlying damaged spermatogenic cell-induced testicular inflammation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources