Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(10):e46703.
doi: 10.1371/journal.pone.0046703. Epub 2012 Oct 11.

microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.)

Affiliations

microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.)

Thaís Helena Ferreira et al. PLoS One. 2012.

Abstract

Sugarcane (Saccharum spp.) is one of the most important crops in the world. Drought stress is a major abiotic stress factor that significantly reduces sugarcane yields. However the gene network that mediates plant responses to water stress remains largely unknown in several crop species. Although several microRNAs that mediate post-transcriptional regulation during water stress have been described in other species, the role of the sugarcane microRNAs during drought stress has not been studied. The objective of this work was to identify sugarcane miRNAs that are differentially expressed under drought stress and to correlate this expression with the behavior of two sugarcane cultivars with different drought tolerances. The sugarcane cultivars RB867515 (higher drought tolerance) and RB855536 (lower drought tolerance) were cultivated in a greenhouse for three months and then subjected to drought for 2, 4, 6 or 8 days. By deep sequencing of small RNAs, we were able to identify 18 miRNA families. Among all of the miRNAs thus identified, seven were differentially expressed during drought. Six of these miRNAs were differentially expressed at two days of stress, and five miRNAs were differentially expressed at four days. The expression levels of five miRNAs (ssp-miR164, ssp-miR394, ssp-miR397, ssp-miR399-seq 1 and miR528) were validated by RT-qPCR (quantitative reverse transcriptase PCR). Six precursors and the targets of the differentially expressed miRNA were predicted using an in silico approach and validated by RT-qPCR; many of these targets may play important roles in drought tolerance. These findings constitute a significant increase in the number of identified miRNAs in sugarcane and contribute to the elucidation of the complex regulatory network that is activated by drought stress.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Real-time PCR of a sugarcane gene encoding a dehydrin (SCQGLR1085F11.g).
RB867515 (higher drought tolerance) and RB855536 (lower drought tolerance) plants were irrigated (black bars) or subjected to drought stress by withholding irrigation (gray bars) for two (A) and four (B) days. Error bars represent the standard error (n = 4). * p<0.07 and ** p<0.05. Statistics was calculated between irrigated and drought treatments in each cultivar using the permutation mean test. The expression in irrigated RB867515 plants was considered as 1.
Figure 2
Figure 2. Size distribution of small RNA (sRNA) redundant sequences in two sugarcane cultivars.
Cultivars RB867515 (A and C) and RB855536 (B and D) were irrigated (gray bars) or drought-stressed (black bars) for two (A and B) and four (C and D) days. RB867515 is the higher drought tolerant genotype, and RB855536 is the lower drought tolerant genotype.
Figure 3
Figure 3. Size distribution of small RNA (sRNA) non-redundant sequences in two sugarcane cultivars.
HTD: RB867515 (higher tolerance cultivar) plants without watering. HTI: RB867515 plants under irrigated conditions. LTD: RB855536 (lower tolerance cultivar) plants without watering. LTI: RB855536 plants under irrigated conditions.
Figure 4
Figure 4. Composition of nucleotides in the first base positions of all 21 nt sequences.
A: Control and stressed plants after two days of drought conditions. B: Control and stressed plants after four days of drought conditions. HTD: RB867515 (higher tolerance cultivar) plants without watering. HTI: RB867515 (higher tolerance cultivar) plants under irrigated conditions. LTD: RB855536 (lower tolerance cultivar) plants without watering. LTI: RB855536 (lower tolerance cultivar) plants under irrigated conditions. The total numbers of 21 nt reads in each library are shown at the tops of the bars.
Figure 5
Figure 5. Primary transcripts containing the predicted stem-loop structures of the precursors of the sugarcane miRNAs.
The mature miRNAs identified in the sugarcane sRNA library are highlighted in black. The sizes of the precursors may be slightly longer than represented. The colors represent the probabilities for sequence alignment. Red is the highest probability of alignment (1), and purple is the lowest probability of alignment (0).
Figure 6
Figure 6. Expression profiles of seven sugarcane miRNAs modulated by drought stress.
The values are expressed as the number of transcripts per million (TPM) for irrigated plants (control, black bars) and drought-stressed plants (gray bars). RB867515 (higher drought tolerance) and RB855536 (lower drought tolerance) plants were evaluated after two and four days of stress, as indicated below each graphic. * p<0.05 and fold change >2.0. Statistics was calculated between irrigated and drought treatments in each cultivar using the Audic-Claverie method .
Figure 7
Figure 7. RT-qPCR expression profiles of five sugarcane miRNAs modulated by drought stress.
The values are expressed as fold changes relative to the irrigated control for each gene. The bars represent the average of the irrigated plants (control, black bars), drought-stressed plants (gray bars) and rehydrated plants (white bars) for RB867515 (higher drought tolerance) after two (A) and four (B) days of stress. Error bars represent the standard error (n = 4). Means followed by different letters are statistically different (p<0.05) using the permutation mean test.

Similar articles

Cited by

References

    1. Bartel DP (2009) MicroRNAs: Target Recognition and Regulatory Functions. Cell 136: 215–233. - PMC - PubMed
    1. Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 642–655. - PMC - PubMed
    1. Bartel DP (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116: 281–297. - PubMed
    1. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Gen 8: 884–896. - PubMed
    1. Lee Y, Kim M, Han JJ, Yeom KH, Lee S, et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. Embo J 23: 4051–4060. - PMC - PubMed

Publication types

MeSH terms

Grants and funding

This study was funded by the following Brazilian funding institutions: FINEP (The Financiadora de Estudos e Projetos), FAPESP (São Paulo Research Foundation), CNPq (The National Council for Scientific and Technological Development) and CAPES (Co-ordination of Improvement of Higher Education Personnel). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.