Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan;31(1):146-55.
doi: 10.1002/stem.1247.

Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis

Affiliations

Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis

Ivy A W Ho et al. Stem Cells. 2013 Jan.

Abstract

Tumor tropism of human bone marrow-derived mesenchymal stem cells (MSC) has been exploited for the delivery of therapeutic genes for anticancer therapy. However, the exact contribution of these cells in the tumor microenvironment remains unknown. In this study, we examined the biological effect of MSC on tumor cells. The results showed that MSC inhibited the growth of human glioma cell lines and patient-derived primary glioma cells in vitro. Coadministration of MSC and glioma cells resulted in significant reduction in tumor volume and vascular density, which was not observed when glioma was injected with immortalized normal human astrocytes. Using endothelial progenitor cells (EPC) from healthy donors and HUVEC endothelial cells, the extent of EPC recruitment and capacity to form endothelial tubes was significantly impaired in conditioned media derived from MSC/glioma coculture, suggesting that MSC suppressed tumor angiogenesis through the release of antiangiogenic factors. Further studies using antibody array showed reduced expression of platelet-derived growth factor (PDGF)-BB and interleukin (IL)-1β in MSC/glioma coculture when compared with controls. In MSC/glioma coculture, PDGF-BB mRNA and the corresponding proteins (soluble and membrane bound forms) as well as the receptors were found to be significantly downregulated when compared with that of glioma cocultured with normal human astrocytes or glioma monoculture. Furthermore, IL-1β, phosphorylated Akt, and cathepsin B proteins were also reduced in MSC/glioma. Taken together, these data indicated that the antitumor effect of MSC may be mediated through downregulation of PDGF/PDGFR axis, which is known to play a key role in glioma angiogenesis. STEM Cells2013;31:146-155.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms