MiRmap: comprehensive prediction of microRNA target repression strength
- PMID: 23034802
- PMCID: PMC3526310
- DOI: 10.1093/nar/gks901
MiRmap: comprehensive prediction of microRNA target repression strength
Abstract
MicroRNAs, or miRNAs, post-transcriptionally repress the expression of protein-coding genes. The human genome encodes over 1000 miRNA genes that collectively target the majority of messenger RNAs (mRNAs). Base pairing of the so-called miRNA 'seed' region with mRNAs identifies many thousands of putative targets. Evaluating the strength of the resulting mRNA repression remains challenging, but is essential for a biologically informative ranking of potential miRNA targets. To address these challenges, predictors may use thermodynamic, evolutionary, probabilistic or sequence-based features. We developed an open-source software library, miRmap, which for the first time comprehensively covers all four approaches using 11 predictor features, 3 of which are novel. This allowed us to examine feature correlations and to compare their predictive power in an unbiased way using high-throughput experimental data from immunopurification, transcriptomics, proteomics and polysome fractionation experiments. Overall, target site accessibility appears to be the most predictive feature. Our novel feature based on PhyloP, which evaluates the significance of negative selection, is the best performing predictor in the evolutionary category. We combined all the features into an integrated model that almost doubles the predictive power of TargetScan. miRmap is freely available from http://cegg.unige.ch/mirmap.
Figures
Similar articles
-
miRmap web: Comprehensive microRNA target prediction online.Nucleic Acids Res. 2013 Jul;41(Web Server issue):W165-8. doi: 10.1093/nar/gkt430. Epub 2013 May 28. Nucleic Acids Res. 2013. PMID: 23716633 Free PMC article.
-
The Limitations of Existing Approaches in Improving MicroRNA Target Prediction Accuracy.Methods Mol Biol. 2017;1617:133-158. doi: 10.1007/978-1-4939-7046-9_10. Methods Mol Biol. 2017. PMID: 28540682
-
Computational Prediction of MicroRNA Target Genes, Target Prediction Databases, and Web Resources.Methods Mol Biol. 2017;1617:109-122. doi: 10.1007/978-1-4939-7046-9_8. Methods Mol Biol. 2017. PMID: 28540680 Review.
-
STarMir Tools for Prediction of microRNA Binding Sites.Methods Mol Biol. 2016;1490:73-82. doi: 10.1007/978-1-4939-6433-8_6. Methods Mol Biol. 2016. PMID: 27665594 Free PMC article.
-
IsomiRs: Expanding the miRNA repression toolbox beyond the seed.Biochim Biophys Acta Gene Regul Mech. 2020 Apr;1863(4):194373. doi: 10.1016/j.bbagrm.2019.03.005. Epub 2019 Apr 4. Biochim Biophys Acta Gene Regul Mech. 2020. PMID: 30953728 Free PMC article. Review.
Cited by
-
Profile analysis and functional modeling identify circular RNAs in nonalcoholic fatty liver disease as regulators of hepatic lipid metabolism.Front Genet. 2022 Sep 15;13:884037. doi: 10.3389/fgene.2022.884037. eCollection 2022. Front Genet. 2022. PMID: 36186461 Free PMC article.
-
RPmirDIP: Reciprocal Perspective improves miRNA targeting prediction.Sci Rep. 2020 Jul 16;10(1):11770. doi: 10.1038/s41598-020-68251-4. Sci Rep. 2020. PMID: 32678114 Free PMC article.
-
SubmiRine: assessing variants in microRNA targets using clinical genomic data sets.Nucleic Acids Res. 2015 Apr 30;43(8):3886-98. doi: 10.1093/nar/gkv256. Epub 2015 Mar 26. Nucleic Acids Res. 2015. PMID: 25813044 Free PMC article.
-
Suicide and Changes in Expression of Neuronal miRNA Predicted by an Algorithm Search through miRNA Databases.Genes (Basel). 2022 Mar 23;13(4):562. doi: 10.3390/genes13040562. Genes (Basel). 2022. PMID: 35456368 Free PMC article.
-
Identification of serum MiRNAs as candidate biomarkers for non-small cell lung cancer diagnosis.BMC Pulm Med. 2022 Dec 16;22(1):479. doi: 10.1186/s12890-022-02267-6. BMC Pulm Med. 2022. PMID: 36522766 Free PMC article.
References
-
- Didiano D, Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat. Struct. Mol. Biol. 2006;13:849–851. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases