Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(9):e46045.
doi: 10.1371/journal.pone.0046045. Epub 2012 Sep 28.

MicroRNA expression profiles of whole blood in lung adenocarcinoma

Affiliations

MicroRNA expression profiles of whole blood in lung adenocarcinoma

Santosh K Patnaik et al. PLoS One. 2012.

Abstract

The association of lung cancer with changes in microRNAs in plasma shown in multiple studies suggests a utility for circulating microRNA biomarkers in non-invasive detection of the disease. We examined if presence of lung cancer is reflected in whole blood microRNA expression as well, possibly because of a systemic response. Locked nucleic acid microarrays were used to quantify the global expression of microRNAs in whole blood of 22 patients with lung adenocarcinoma and 23 controls, ten of whom had a radiographically detected non-cancerous lung nodule and the other 13 were at high risk for developing lung cancer because of a smoking history of >20 pack-years. Cases and controls differed significantly for age with a mean difference of 10.7 years, but not for gender, race, smoking history, blood hemoglobin, platelet count, or white blood cell count. Of 1282 quantified human microRNAs, 395 (31%) were identified as expressed in the study's subjects, with 96 (24%) differentially expressed between cases and controls. Classification analyses of microRNA expression data were performed using linear kernel support vector machines (SVM) and top-scoring pairs (TSP) methods, and classifiers to identify presence of lung adenocarcinoma were internally cross-validated. In leave-one-out cross-validation, the TSP classifiers had sensitivity and specificity of 91% and 100%, respectively. The values with SVM were both 91%. In a Monte Carlo cross-validation, average sensitivity and specificity values were 86% and 97%, respectively, with TSP, and 88% and 89%, respectively, with SVM. MicroRNAs miR-190b, miR-630, miR-942, and miR-1284 were the most frequent constituents of the classifiers generated during the analyses. These results suggest that whole blood microRNA expression profiles can be used to distinguish lung cancer cases from clinically relevant controls. Further studies are needed to validate this observation, including in non-adenocarcinomatous lung cancers, and to clarify upon the confounding effect of age.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: SY is currently an academic editor for PLOS ONE. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Correlation between microRNA quantification by reverse transcription-PCR (RT-PCR) and microarray.
The scatter-plots show RT-PCR quantification cycle (Cq) values and log2-transformed microarray signal values for microRNAs let-7e, miR-22, miR-30a-5p, miR-185, miR-210, and miR-423-5p (n = 11). Pearson correlation coefficients (r) and their 95% confidence intervals and associated P values, and best fitting (least squares) lines are also shown.
Figure 2
Figure 2. Whole blood microRNA expression in lung adenocarcinoma cases and controls.
A. Unsupervised clustering of the 45 samples of this study by log2-transformed microarray signal values of all 395 expressed microRNAs. The numbers indicate identities of the 45 subjects, with cases (n = 22) and controls (n = 23) shown in black and grey, respectively. The sample tree with optimized leaf-ordering is drawn using Pearson correlation for distance metric and average linkage for cluster-to-cluster distance, and the scale for it represents node-heights. B. Supervised clustering of microRNAs by their log2-transformed microarray signal values. The heat-map, with the pseudo-color scale underneath, shows log2-transformed microarray signal values of the 43 microRNAs whose expression is altered >25% in either direction in the cases compared to the controls. The gene tree is drawn as in A.
Figure 3
Figure 3. Expression of miR-1284, miR-942, miR-630, and miR-190b.
Dot-plots with medians and inter-quartile ranges of log2-transformed microarray signal values for the 22 cases (black) and 23 controls (grey) are shown for the four microRNAs that are present in a majority of the classifiers generated in internal cross-validation analyses using the linear support vector machines and top-scoring pairs classification methods.
Figure 4
Figure 4. Association with lung adenocarcinoma of age, and blood hemoglobin level, and white blood cell (WBC) and platelet counts.
A. Receiver operating characteristic curves, the areas under curve (AUC) for age, and the line of identity, x = y, with an AUC of 0.5, are shown. B. Correlation with microRNA expression. Values for the clinical variables were correlated with microarray signal values for the 395 expressed microRNAs (n = 45 for age; n = 39 for others). The curves depict frequency histograms of Pearson correlation coefficients (r) with a bin of 0.025. Curves were smoothened using four neighbors for averaging and a zero order polynomial. Correlations are also shown for the random variable resampled WBC count for which values were generated by resampling the WBC count data.

Similar articles

Cited by

References

    1. Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, et al. (2011) Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst 103: 714–736. - PMC - PubMed
    1. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365: 395–409. - PMC - PubMed
    1. Ost D, Fein A (2000) Evaluation and management of the solitary pulmonary nodule. American journal of respiratory and critical care medicine 162: 782–787. - PubMed
    1. Ost DE, Gould MK (2012) Decision making in patients with pulmonary nodules. American journal of respiratory and critical care medicine 185: 363–372. - PMC - PubMed
    1. MacMahon H, Austin JH, Gamsu G, Herold CJ, Jett JR, et al. (2005) Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 237: 395–400. - PubMed

Publication types

MeSH terms