Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation
- PMID: 22952237
- PMCID: PMC3438923
- DOI: 10.1074/jbc.R111.324962
Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation
Abstract
Eukaryotic genomes are organized into higher order chromatin architectures by protein-mediated long-range interactions in the nucleus. CCCTC-binding factor (CTCF), a sequence-specific transcription factor, serves as a chromatin organizer in building this complex chromatin structure by linking chromosomal domains. Recent genome-wide studies mapping the binding sites of CTCF and its interacting partner, cohesin, using chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) revealded that CTCF globally co-localizes with cohesin. This partnership between CTCF and cohesin is emerging as a novel and perhaps pivotal aspect of gene regulatory mechanisms, in addition to playing a role in the organization of higher order chromatin architecture.
Figures
Similar articles
-
Genome-wide and parental allele-specific analysis of CTCF and cohesin DNA binding in mouse brain reveals a tissue-specific binding pattern and an association with imprinted differentially methylated regions.Genome Res. 2013 Oct;23(10):1624-35. doi: 10.1101/gr.150136.112. Epub 2013 Jun 26. Genome Res. 2013. PMID: 23804403 Free PMC article.
-
Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders.Genome Biol. 2016 Aug 31;17(1):182. doi: 10.1186/s13059-016-1043-8. Genome Biol. 2016. PMID: 27582050 Free PMC article.
-
Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl.Nature. 2017 Apr 27;544(7651):503-507. doi: 10.1038/nature22063. Epub 2017 Apr 19. Nature. 2017. PMID: 28424523 Free PMC article.
-
Genetic Tailors: CTCF and Cohesin Shape the Genome During Evolution.Trends Genet. 2015 Nov;31(11):651-660. doi: 10.1016/j.tig.2015.09.004. Epub 2015 Oct 1. Trends Genet. 2015. PMID: 26439501 Review.
-
CTCF and cohesin: linking gene regulatory elements with their targets.Cell. 2013 Mar 14;152(6):1285-97. doi: 10.1016/j.cell.2013.02.029. Cell. 2013. PMID: 23498937 Review.
Cited by
-
Retinoic acid induced meiosis initiation in female germline stem cells by remodelling three-dimensional chromatin structure.Cell Prolif. 2022 Jul;55(7):e13242. doi: 10.1111/cpr.13242. Epub 2022 May 28. Cell Prolif. 2022. PMID: 35633286 Free PMC article.
-
Dysregulation of the cohesin subunit RAD21 by Hepatitis C virus mediates host-virus interactions.Nucleic Acids Res. 2019 Mar 18;47(5):2455-2471. doi: 10.1093/nar/gkz052. Nucleic Acids Res. 2019. PMID: 30698808 Free PMC article.
-
Mechanistic insights into the regulation of transcription and transcription-coupled DNA repair by Cockayne syndrome protein B.Nucleic Acids Res. 2018 Sep 6;46(15):7471-7479. doi: 10.1093/nar/gky660. Nucleic Acids Res. 2018. PMID: 30032309 Free PMC article.
-
Predicting enhancers in mammalian genomes using supervised hidden Markov models.BMC Bioinformatics. 2019 Mar 27;20(1):157. doi: 10.1186/s12859-019-2708-6. BMC Bioinformatics. 2019. PMID: 30917778 Free PMC article.
-
annoPeak: a web application to annotate and visualize peaks from ChIP-seq/ChIP-exo-seq.Bioinformatics. 2017 May 15;33(10):1570-1571. doi: 10.1093/bioinformatics/btx016. Bioinformatics. 2017. PMID: 28169395 Free PMC article.
References
-
- Dekker J., Rippe K., Dekker M., Kleckner N. (2002) Capturing chromosome conformation. Science 295, 1306–1311 - PubMed
-
- Simonis M., Klous P., Splinter E., Moshkin Y., Willemsen R., de Wit E., van Steensel B., de Laat W. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 - PubMed
-
- Dostie J., Richmond T. A., Arnaout R. A., Selzer R. R., Lee W. L., Honan T. A., Rubio E. D., Krumm A., Lamb J., Nusbaum C., Green R. D., Dekker J. (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 - PMC - PubMed
-
- Fullwood M. J., Liu M. H., Pan Y. F., Liu J., Xu H., Mohamed Y. B., Orlov Y. L., Velkov S., Ho A., Mei P. H., Chew E. G., Huang P. Y., Welboren W. J., Han Y., Ooi H. S., Ariyaratne P. N., Vega V. B., Luo Y., Tan P. Y., Choy P. Y., Wansa K. D., Zhao B., Lim K. S., Leow S. C., Yow J. S., Joseph R., Li H., Desai K. V., Thomsen J. S., Lee Y. K., Karuturi R. K., Herve T., Bourque G., Stunnenberg H. G., Ruan X., Cacheux-Rataboul V., Sung W. K., Liu E. T., Wei C. L., Cheung E., Ruan Y. (2009) An estrogen receptor-α-bound human chromatin interactome. Nature 462, 58–64 - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources