TRP channels: sensors and transducers of gasotransmitter signals
- PMID: 22934072
- PMCID: PMC3429092
- DOI: 10.3389/fphys.2012.00324
TRP channels: sensors and transducers of gasotransmitter signals
Abstract
The transient receptor potential (trp) gene superfamily encodes cation channels that act as multimodal sensors for a wide variety of stimuli from outside and inside the cell. Upon sensing, they transduce electrical and Ca(2+) signals via their cation channel activities. These functional features of TRP channels allow the body to react and adapt to different forms of environmental changes. Indeed, members of one class of TRP channels have emerged as sensors of gaseous messenger molecules that control various cellular processes. Nitric oxide (NO), a vasoactive gaseous molecule, regulates TRP channels directly via cysteine (Cys) S-nitrosylation or indirectly via cyclic GMP (cGMP)/protein kinase G (PKG)-dependent phosphorylation. Recent studies have revealed that changes in the availability of molecular oxygen (O(2)) also control the activation of TRP channels. Anoxia induced by O(2)-glucose deprivation and severe hypoxia (1% O(2)) activates TRPM7 and TRPC6, respectively, whereas TRPA1 has recently been identified as a novel sensor of hyperoxia and mild hypoxia (15% O(2)) in vagal and sensory neurons. TRPA1 also detects other gaseous molecules such as hydrogen sulfide (H(2)S) and carbon dioxide (CO(2)). In this review, we focus on how signaling by gaseous molecules is sensed and integrated by TRP channels.
Keywords: TRP channels; TRPA1; TRPC5; TRPC6; TRPV1; gasotransmitter; nitric oxide; oxygen.
Figures





Similar articles
-
TRP channels in oxygen physiology: distinctive functional properties and roles of TRPA1 in O2 sensing.Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):464-482. doi: 10.2183/pjab.93.028. Proc Jpn Acad Ser B Phys Biol Sci. 2017. PMID: 28769017 Free PMC article. Review.
-
TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters).Handb Exp Pharmacol. 2014;223:767-94. doi: 10.1007/978-3-319-05161-1_3. Handb Exp Pharmacol. 2014. PMID: 24961969 Review.
-
TRP Channels as Sensors and Signal Integrators of Redox Status Changes.Front Pharmacol. 2011 Oct 13;2:58. doi: 10.3389/fphar.2011.00058. eCollection 2011. Front Pharmacol. 2011. PMID: 22016736 Free PMC article.
-
TRP channels as sensors of oxygen availability.Pflugers Arch. 2013 Aug;465(8):1075-85. doi: 10.1007/s00424-013-1237-9. Epub 2013 Feb 17. Pflugers Arch. 2013. PMID: 23417605 Review.
-
Redox regulation of transient receptor potential channels.Antioxid Redox Signal. 2014 Aug 20;21(6):971-86. doi: 10.1089/ars.2013.5616. Epub 2013 Oct 25. Antioxid Redox Signal. 2014. PMID: 24161127 Review.
Cited by
-
Calcium influx through TRP channels induced by short-lived reactive species in plasma-irradiated solution.Sci Rep. 2016 May 12;6:25728. doi: 10.1038/srep25728. Sci Rep. 2016. PMID: 27169489 Free PMC article.
-
TRP channels in oxygen physiology: distinctive functional properties and roles of TRPA1 in O2 sensing.Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):464-482. doi: 10.2183/pjab.93.028. Proc Jpn Acad Ser B Phys Biol Sci. 2017. PMID: 28769017 Free PMC article. Review.
-
Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling.Compr Physiol. 2019 Jun 12;9(3):1249-1277. doi: 10.1002/cphy.c180034. Compr Physiol. 2019. PMID: 31187891 Free PMC article. Review.
-
Role of TRP channels in the cardiovascular system.Am J Physiol Heart Circ Physiol. 2015 Feb 1;308(3):H157-82. doi: 10.1152/ajpheart.00457.2014. Epub 2014 Nov 21. Am J Physiol Heart Circ Physiol. 2015. PMID: 25416190 Free PMC article. Review.
-
Gasotransmitters: novel regulators of ion channels and transporters.Front Physiol. 2013 Feb 21;4:27. doi: 10.3389/fphys.2013.00027. eCollection 2013. Front Physiol. 2013. PMID: 23437016 Free PMC article. No abstract available.
References
-
- Bandell M., Story G. M., Hwang S. W., Viswanath V., Eid S. R., Petrus M. J., Earley T. J., Patapoutian A. (2004). Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 - PubMed
-
- Bergdahl A., Gomez M. F., Dreja K., Xu S. Z., Adner M., Beech D. J., Broman J., Hellstrand P., Swärd K. (2003). Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ. Res. 93, 839–847 10.1161/01.RES.0000100367.45446.A3 - DOI - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous