Calcium signaling in the cochlea - Molecular mechanisms and physiopathological implications
- PMID: 22788415
- PMCID: PMC3408374
- DOI: 10.1186/1478-811X-10-20
Calcium signaling in the cochlea - Molecular mechanisms and physiopathological implications
Abstract
Calcium ions (Ca2+) regulate numerous and diverse aspects of cochlear and vestibular physiology. This review focuses on the Ca2+ control of mechanotransduction and synaptic transmission in sensory hair cells, as well as on Ca2+ signalling in non-sensory cells of the developing cochlea.
Similar articles
-
The concentrations of calcium buffering proteins in mammalian cochlear hair cells.J Neurosci. 2005 Aug 24;25(34):7867-75. doi: 10.1523/JNEUROSCI.1196-05.2005. J Neurosci. 2005. PMID: 16120789 Free PMC article.
-
Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice.J Assoc Res Otolaryngol. 2004 Jun;5(2):215-26. doi: 10.1007/s10162-003-4020-3. J Assoc Res Otolaryngol. 2004. PMID: 15357422 Free PMC article.
-
Notch signalling pathway mediates hair cell development in mammalian cochlea.Nat Genet. 1999 Mar;21(3):289-92. doi: 10.1038/6804. Nat Genet. 1999. PMID: 10080181
-
ATP-dependent intercellular Ca2+ signaling in the developing cochlea: facts, fantasies and perspectives.Semin Cell Dev Biol. 2013 Jan;24(1):31-9. doi: 10.1016/j.semcdb.2012.09.004. Epub 2012 Sep 28. Semin Cell Dev Biol. 2013. PMID: 23022499 Review.
-
The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential.Int J Dev Neurosci. 2015 Dec;47(Pt B):247-58. doi: 10.1016/j.ijdevneu.2015.09.008. Epub 2015 Oct 22. Int J Dev Neurosci. 2015. PMID: 26471908 Review.
Cited by
-
Creation of a novel CRISPR-generated allele to express HA epitope-tagged C1QL1 and improved methods for its detection at synapses.FEBS Lett. 2024 Oct;598(19):2417-2437. doi: 10.1002/1873-3468.14946. Epub 2024 Jun 10. FEBS Lett. 2024. PMID: 38858133
-
Inactivity of Stat3 in sensory and non-sensory cells of the mature cochlea.Front Mol Neurosci. 2024 Oct 14;17:1455136. doi: 10.3389/fnmol.2024.1455136. eCollection 2024. Front Mol Neurosci. 2024. PMID: 39469187 Free PMC article.
-
Functional calcium imaging in zebrafish lateral-line hair cells.Methods Cell Biol. 2016;133:229-52. doi: 10.1016/bs.mcb.2015.12.002. Epub 2016 Feb 28. Methods Cell Biol. 2016. PMID: 27263415 Free PMC article.
-
The genomic landscape of Ménière's disease: a path to endolymphatic hydrops.BMC Genomics. 2024 Jun 28;25(1):646. doi: 10.1186/s12864-024-10552-3. BMC Genomics. 2024. PMID: 38943082 Free PMC article.
-
Mechanotransduction in the endothelium: role of membrane proteins and reactive oxygen species in sensing, transduction, and transmission of the signal with altered blood flow.Antioxid Redox Signal. 2014 Feb 20;20(6):899-913. doi: 10.1089/ars.2013.5624. Epub 2014 Jan 22. Antioxid Redox Signal. 2014. PMID: 24328670 Free PMC article. Review.
References
-
- Lim DJ. Functional structure of the organ of Corti: a review. Hear Res. 1986;22:117–146. - PubMed
-
- Mammano F, Bortolozzi M, Ortolano S, Anselmi F. Ca2+ signaling in the inner ear. Physiology (Bethesda) 2007;22:131–144. - PubMed
-
- Bosher SK, Warren RL. Very low calcium content of cochlear endolymph, an extracellular fluid. Nature. 1978;273:377–378. - PubMed
-
- Anniko M, Wroblewski R. Elemental composition of the developing inner ear. Ann Otol Rhinol Laryngol. 1981;90:25–32. - PubMed
-
- Hibino H, Kurachi Y. Molecular and physiological bases of the K + circulation in the mammalian inner ear. Physiology (Bethesda) 2006;21:336–345. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous