Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences
- PMID: 22735187
- PMCID: PMC3400019
- DOI: 10.1038/emboj.2012.170
Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences
Abstract
Neurons are critically dependent on mitochondrial integrity based on specific morphological, biochemical, and physiological features. They are characterized by high rates of metabolic activity and need to respond promptly to activity-dependent fluctuations in bioenergetic demand. The dimensions and polarity of neurons require efficient transport of mitochondria to hot spots of energy consumption, such as presynaptic and postsynaptic sites. Moreover, the postmitotic state of neurons in combination with their exposure to intrinsic and extrinsic neuronal stress factors call for a high fidelity of mitochondrial quality control systems. Consequently, it is not surprising that mitochondrial alterations can promote neuronal dysfunction and degeneration. In particular, mitochondrial dysfunction has long been implicated in the etiopathogenesis of Parkinson's disease (PD), based on the observation that mitochondrial toxins can cause parkinsonism in humans and animal models. Substantial progress towards understanding the role of mitochondria in the disease process has been made by the identification and characterization of genes causing familial variants of PD. Studies on the function and dysfunction of these genes revealed that various aspects of mitochondrial biology appear to be affected in PD, comprising mitochondrial biogenesis, bioenergetics, dynamics, transport, and quality control.
Conflict of interest statement
The authors declare that they have no conflict of interest.
Figures
Similar articles
-
The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson's disease.Neurobiol Dis. 2013 Mar;51:43-55. doi: 10.1016/j.nbd.2012.05.015. Epub 2012 Jun 2. Neurobiol Dis. 2013. PMID: 22668779 Free PMC article. Review.
-
Mitochondrial quality control and Parkinson's disease: a pathway unfolds.Mol Neurobiol. 2011 Apr;43(2):80-6. doi: 10.1007/s12035-010-8150-4. Epub 2010 Dec 1. Mol Neurobiol. 2011. PMID: 21120708 Free PMC article. Review.
-
Mitochondrial dysfunction in genetic animal models of Parkinson's disease.Antioxid Redox Signal. 2012 May 1;16(9):896-919. doi: 10.1089/ars.2011.4200. Epub 2011 Oct 4. Antioxid Redox Signal. 2012. PMID: 21848447 Free PMC article. Review.
-
Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson's disease.FEBS Lett. 2015 Dec 21;589(24 Pt A):3702-13. doi: 10.1016/j.febslet.2015.10.021. Epub 2015 Oct 23. FEBS Lett. 2015. PMID: 26526613 Free PMC article. Review.
-
Monitoring mitochondrial dynamics and complex I dysfunction in neurons: implications for Parkinson's disease.Biochem Soc Trans. 2013 Dec;41(6):1618-24. doi: 10.1042/BST20130189. Biochem Soc Trans. 2013. PMID: 24256264
Cited by
-
Mitochondrial support and local translation of mitochondrial proteins in synaptic plasticity and function.Histol Histopathol. 2021 Oct;36(10):1007-1019. doi: 10.14670/HH-18-345. Epub 2021 May 25. Histol Histopathol. 2021. PMID: 34032272 Review.
-
SOD2 in mitochondrial dysfunction and neurodegeneration.Free Radic Biol Med. 2013 Sep;62:4-12. doi: 10.1016/j.freeradbiomed.2013.05.027. Epub 2013 May 29. Free Radic Biol Med. 2013. PMID: 23727323 Free PMC article. Review.
-
TRAP1 rescues PINK1 loss-of-function phenotypes.Hum Mol Genet. 2013 Jul 15;22(14):2829-41. doi: 10.1093/hmg/ddt132. Epub 2013 Mar 21. Hum Mol Genet. 2013. PMID: 23525905 Free PMC article.
-
Glycogen synthase kinase-3 inhibitors as potent therapeutic agents for the treatment of Parkinson disease.ACS Chem Neurosci. 2013 Feb 20;4(2):350-60. doi: 10.1021/cn300182g. Epub 2012 Dec 5. ACS Chem Neurosci. 2013. PMID: 23421686 Free PMC article.
-
Fenpropathrin induces degeneration of dopaminergic neurons via disruption of the mitochondrial quality control system.Cell Death Discov. 2020 Aug 25;6:78. doi: 10.1038/s41420-020-00313-y. eCollection 2020. Cell Death Discov. 2020. PMID: 32884840 Free PMC article.
References
-
- Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25: 239–252 - PubMed
-
- Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7: 207–219 - PubMed
-
- Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26: 211–215 - PubMed
-
- Agirre X, Roman-Gomez J, Vazquez I, Jimenez-Velasco A, Garate L, Montiel-Duarte C, Artieda P, Cordeu L, Lahortiga I, Calasanz MJ, Heiniger A, Torres A, Minna JD, Prosper F (2006) Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia. Int J Cancer 118: 1945–1953 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous