Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization
- PMID: 22658602
- PMCID: PMC3382010
- DOI: 10.1016/j.cub.2012.03.066
Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization
Abstract
Background: Microtubules (MTs) are formed from the lateral association of 11-16 protofilament chains of tubulin dimers, with most cells containing 13-protofilament (13-p) MTs. How these different MTs are formed is unknown, although the number of protofilaments may depend on the nature of the α- and β-tubulins.
Results: Here we show that the enzymatic activity of the Caenorhabiditis elegans α-tubulin acetyltransferase (α-TAT) MEC-17 allows the production of 15-p MTs in the touch receptor neurons (TRNs) MTs. Without MEC-17, MTs with between 11 and 15 protofilaments are seen. Loss of this enzymatic activity also changes the number and organization of the TRN MTs and affects TRN axonal morphology. In contrast, enzymatically inactive MEC-17 is sufficient for touch sensitivity and proper process outgrowth without correcting the MT defects. Thus, in addition to demonstrating that MEC-17 is required for MT structure and organization, our results suggest that the large number of 15-p MTs, normally found in the TRNs, is not essential for mechanosensation.
Conclusion: These experiments reveal a specific role for α-TAT in the formation of MTs and in the production of higher order MTs arrays. In addition, our results indicate that the α-TAT protein has functions that require acetyltransferase activity (such as the determination of protofilament number) and others that do not (presence of internal MT structures).
Copyright © 2012 Elsevier Ltd. All rights reserved.
Figures
Comment in
-
Microtubules: MEC-17 moonlights in the lumen.Curr Biol. 2012 Jun 19;22(12):R483-5. doi: 10.1016/j.cub.2012.05.027. Curr Biol. 2012. PMID: 22720680
Similar articles
-
Posttranslational acetylation of α-tubulin constrains protofilament number in native microtubules.Curr Biol. 2012 Jun 19;22(12):1066-74. doi: 10.1016/j.cub.2012.05.012. Epub 2012 May 31. Curr Biol. 2012. PMID: 22658592 Free PMC article.
-
Microtubules: MEC-17 moonlights in the lumen.Curr Biol. 2012 Jun 19;22(12):R483-5. doi: 10.1016/j.cub.2012.05.027. Curr Biol. 2012. PMID: 22720680
-
The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation.Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21517-22. doi: 10.1073/pnas.1013728107. Epub 2010 Nov 10. Proc Natl Acad Sci U S A. 2010. PMID: 21068373 Free PMC article.
-
Functions of the tubulin code in the C. elegans nervous system.Mol Cell Neurosci. 2022 Dec;123:103790. doi: 10.1016/j.mcn.2022.103790. Epub 2022 Nov 9. Mol Cell Neurosci. 2022. PMID: 36368428 Review.
-
Tubulins in C. elegans.WormBook. 2018 Aug 4;2018:1-32. doi: 10.1895/wormbook.1.182.1. WormBook. 2018. PMID: 29381886 Free PMC article. Review.
Cited by
-
Editing of endogenous tubulins reveals varying effects of tubulin posttranslational modifications on axonal growth and regeneration.Elife. 2024 Jul 1;13:RP94583. doi: 10.7554/eLife.94583. Elife. 2024. PMID: 38949652 Free PMC article.
-
Autophagic degradation of KAT2A/GCN5 promotes directional migration of vascular smooth muscle cells by reducing TUBA/α-tubulin acetylation.Autophagy. 2020 Oct;16(10):1753-1770. doi: 10.1080/15548627.2019.1707488. Epub 2019 Dec 27. Autophagy. 2020. PMID: 31878840 Free PMC article.
-
α-Tubulin acetylation at lysine 40 regulates dendritic arborization and larval locomotion by promoting microtubule stability in Drosophila.PLoS One. 2023 Feb 24;18(2):e0280573. doi: 10.1371/journal.pone.0280573. eCollection 2023. PLoS One. 2023. PMID: 36827311 Free PMC article.
-
Non-enzymatic Activity of the α-Tubulin Acetyltransferase αTAT Limits Synaptic Bouton Growth in Neurons.Curr Biol. 2020 Feb 24;30(4):610-623.e5. doi: 10.1016/j.cub.2019.12.022. Epub 2020 Jan 9. Curr Biol. 2020. PMID: 31928876 Free PMC article.
-
Intrinsically disordered tubulin tails: complex tuners of microtubule functions?Semin Cell Dev Biol. 2015 Jan;37:11-9. doi: 10.1016/j.semcdb.2014.09.026. Epub 2014 Oct 13. Semin Cell Dev Biol. 2015. PMID: 25307498 Free PMC article. Review.
References
-
- Burton PR, Hinkley RE. Further electron miscroscopic characterization of axoplasmic microtubules of the ventral cord of the crayfish. J Submicrosc Cytol. 1974;6:311–326.
-
- Afzelius BA, Bellon PL, Lanzavecchia S. Microtubules and their protofilaments in the flagellum of an insect spermatozoon. J Cell Sci. 1990;95(Pt 2):207–217. - PubMed
-
- Hirose K, Amos WB, Lockhart A, Cross RA, Amos LA. Three-dimensional cryoelectron microscopy of 16-protofilament microtubules: structure, polarity, and interaction with motor proteins. J Struct Biol. 1997;118:140–148. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases