Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Sep;123(6):333-46.
doi: 10.1042/CS20120111.

Angiotensin-(1-7) in kidney disease: a review of the controversies

Affiliations
Review

Angiotensin-(1-7) in kidney disease: a review of the controversies

Danielle Zimmerman et al. Clin Sci (Lond). 2012 Sep.

Abstract

Ang-(1-7) [angiotensin-(1-7)] is a biologically active heptapeptide component of the RAS (renin-angiotensin system), and is generated in the kidney at relatively high levels, via enzymatic pathways that include ACE2 (angiotensin-converting enzyme 2). The biological effects of Ang-(1-7) in the kidney are primarily mediated by interaction with the G-protein-coupled receptor Mas. However, other complex effects have been described that may involve receptor-receptor interactions with AT(1) (angiotensin II type 1) or AT(2) (angiotensin II type 2) receptors, as well as nuclear receptor binding. In the renal vasculature, Ang-(1-7) has vasodilatory properties and it opposes growth-stimulatory signalling in tubular epithelial cells. In several kidney diseases, including hypertensive and diabetic nephropathy, glomerulonephritis, tubulointerstitial fibrosis, pre-eclampsia and acute kidney injury, a growing body of evidence supports a role for endogenous or exogenous Ang-(1-7) as an antagonist of signalling mediated by AT(1) receptors and thereby as a protector against nephron injury. In certain experimental conditions, Ang-(1-7) appears to paradoxically exacerbate renal injury, suggesting that dose or route of administration, state of activation of the local RAS, cell-specific signalling or non-Mas receptor-mediated pathways may contribute to the deleterious responses. Although Ang-(1-7) has promise as a potential therapeutic agent in humans with kidney disease, further studies are required to delineate its signalling mechanisms in the kidney under physiological and pathophysiological conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms