Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun;2(3):233-41.
doi: 10.1016/j.coviro.2012.04.006. Epub 2012 May 17.

Recent insights into pulmonary repair following virus-induced inflammation of the respiratory tract

Affiliations
Review

Recent insights into pulmonary repair following virus-induced inflammation of the respiratory tract

Stacey A Gorski et al. Curr Opin Virol. 2012 Jun.

Abstract

A hallmark of infection by respiratory viruses is productive infection of and the subsequent destruction of the airway epithelium. These viruses can also target other stromal cell types as well as in certain instances, CD45(+) hematopoietic cells either resident in the lungs or part of the inflammatory response to infection. The mechanisms by which the virus produces injury to these cell types include direct infection with cytopathic effects as a consequence of replication. Host mediated damage is also a culprit in pulmonary injury as both innate and adaptive immune cells produce soluble and cell-associated pro-inflammatory mediators. Recently, it has become increasingly clear that in addition to control of excess inflammation and virus elimination, the resolution of infection requires an active repair process, which is necessary to regain normal respiratory function and restore the lungs to homeostasis. The repair response must re-establish the epithelial barrier and regenerate the microarchitecture of the lung. Emerging areas of research have highlighted the importance of innate immune cells, particularly the newly described innate lymphoid cells, as well as alternatively activated macrophages and pulmonary stem cells in the repair process. The mechanisms by which respiratory viruses may impede or alter the repair response will be important areas of research for identifying therapeutic targets aimed at limiting virus and host mediated injury and expediting recovery.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Kohlmeier J.E., Woodland D.L. Immunity to respiratory viruses. Annu Rev Immunol. 2009;27:61–82. - PubMed
    1. Kumar P.A., Hu Y., Yamamoto Y., Hoe N.B., Wei T.S., Mu D., Sun Y., Joo L.S., Dagher R., Zielonka E.M. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell. 2011;147:525–538. - PMC - PubMed
    2. This paper nicely demonstrates the existence of distal airway stem cells that can regenerate alveoli following IAV infection.

    1. Roberts A., Deming D., Paddock C.D., Cheng A., Yount B., Vogel L., Herman B.D., Sheahan T., Heise M., Genrich G.L. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 2007;3:e5. - PMC - PubMed
    1. Chen Y., Chan V.S., Zheng B., Chan K.Y., Xu X., To L.Y., Huang F.P., Khoo U.S., Lin C.L. A novel subset of putative stem/progenitor CD34+Oct-4+ cells is the major target for SARS coronavirus in human lung. J Exp Med. 2007;204:2529–2536. - PMC - PubMed
    1. Ling T.Y., Kuo M.D., Li C.L., Yu A.L., Huang Y.H., Wu T.J., Lin Y.C., Chen S.H., Yu J. Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci U S A. 2006;103:9530–9535. - PMC - PubMed

Publication types