Mitochondrial Ca(2+) mobilization is a key element in olfactory signaling
- PMID: 22446879
- DOI: 10.1038/nn.3074
Mitochondrial Ca(2+) mobilization is a key element in olfactory signaling
Abstract
In olfactory sensory neurons (OSNs), cytosolic Ca(2+) controls the gain and sensitivity of olfactory signaling. Important components of the molecular machinery that orchestrates OSN Ca(2+) dynamics have been described, but key details are still missing. Here, we demonstrate a critical physiological role of mitochondrial Ca(2+) mobilization in mouse OSNs. Combining a new mitochondrial Ca(2+) imaging approach with patch-clamp recordings, organelle mobility assays and ultrastructural analyses, our study identifies mitochondria as key determinants of olfactory signaling. We show that mitochondrial Ca(2+) mobilization during sensory stimulation shapes the cytosolic Ca(2+) response profile in OSNs, ensures a broad dynamic response range and maintains sensitivity of the spike generation machinery. When mitochondrial function is impaired, olfactory neurons function as simple stimulus detectors rather than as intensity encoders. Moreover, we describe activity-dependent recruitment of mitochondria to olfactory knobs, a mechanism that provides a context-dependent tool for OSNs to maintain cellular homeostasis and signaling integrity.
Comment in
-
On the scent of mitochondrial calcium.Nat Neurosci. 2012 Apr 25;15(5):653-4. doi: 10.1038/nn.3090. Nat Neurosci. 2012. PMID: 22534577 No abstract available.
Similar articles
-
Spontaneous and sensory-evoked activity in mouse olfactory sensory neurons with defined odorant receptors.J Neurophysiol. 2013 Jul;110(1):55-62. doi: 10.1152/jn.00910.2012. Epub 2013 Apr 17. J Neurophysiol. 2013. PMID: 23596334 Free PMC article.
-
Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.J Neurosci. 2014 Apr 2;34(14):4857-70. doi: 10.1523/JNEUROSCI.0688-13.2014. J Neurosci. 2014. PMID: 24695705 Free PMC article.
-
Odorant receptor expression defines functional units in the mouse olfactory system.J Neurosci. 2002 Apr 15;22(8):3033-43. doi: 10.1523/JNEUROSCI.22-08-03033.2002. J Neurosci. 2002. PMID: 11943806 Free PMC article.
-
Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice.Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1970-5. doi: 10.1073/pnas.0508491103. Epub 2006 Jan 30. Proc Natl Acad Sci U S A. 2006. PMID: 16446455 Free PMC article.
-
Olfactory receptor function.Handb Clin Neurol. 2019;164:67-78. doi: 10.1016/B978-0-444-63855-7.00005-8. Handb Clin Neurol. 2019. PMID: 31604564 Review.
Cited by
-
Novel features on the regulation by mitochondria of calcium and secretion transients in chromaffin cells challenged with acetylcholine at 37°C.Physiol Rep. 2013 Dec 19;1(7):e00182. doi: 10.1002/phy2.182. eCollection 2013 Dec 1. Physiol Rep. 2013. PMID: 24744861 Free PMC article.
-
Facilitating Mitochondrial Calcium Uptake Improves Activation-Induced Cerebral Blood Flow and Behavior after mTBI.Front Syst Neurosci. 2016 Mar 8;10:19. doi: 10.3389/fnsys.2016.00019. eCollection 2016. Front Syst Neurosci. 2016. PMID: 27013987 Free PMC article.
-
Regenerative glutamate release by presynaptic NMDA receptors contributes to spreading depression.J Cereb Blood Flow Metab. 2013 Oct;33(10):1582-94. doi: 10.1038/jcbfm.2013.113. Epub 2013 Jul 3. J Cereb Blood Flow Metab. 2013. PMID: 23820646 Free PMC article.
-
Odor sampling strategies in mice with genetically altered olfactory responses.PLoS One. 2021 May 3;16(5):e0249798. doi: 10.1371/journal.pone.0249798. eCollection 2021. PLoS One. 2021. PMID: 33939692 Free PMC article.
-
Systematic morphological and morphometric analysis of identified olfactory receptor neurons in Drosophila melanogaster.Elife. 2021 Aug 23;10:e69896. doi: 10.7554/eLife.69896. Elife. 2021. PMID: 34423777 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous