Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(3):e31391.
doi: 10.1371/journal.pone.0031391. Epub 2012 Mar 6.

Migration of Th1 lymphocytes is regulated by CD152 (CTLA-4)-mediated signaling via PI3 kinase-dependent Akt activation

Affiliations

Migration of Th1 lymphocytes is regulated by CD152 (CTLA-4)-mediated signaling via PI3 kinase-dependent Akt activation

Karin Knieke et al. PLoS One. 2012.

Abstract

Efficient adaptive immune responses require the localization of T lymphocytes in secondary lymphoid organs and inflamed tissues. To achieve correct localization of T lymphocytes, the migration of these cells is initiated and directed by adhesion molecules and chemokines. It has recently been shown that the inhibitory surface molecule CD152 (CTLA-4) initiates Th cell migration, but the molecular mechanism underlying this effect remains to be elucidated. Using CD4 T lymphocytes derived from OVA-specific TCR transgenic CD152-deficient and CD152-competent mice, we demonstrate that chemokine-triggered signal transduction is differentially regulated by CD152 via phosphoinositide 3-kinase (PI3K)-dependent activation of protein kinase B (PKB/Akt). In the presence of CD152 signaling, the chemoattractant CCL4 selectively induces the full activation of Akt via phosphorylation at threonine 308 and serine 473 in pro-inflammatory Th lymphocytes expressing the cognate chemokine receptor CCR5. Akt signals lead to cytoskeleton rearrangements, which are indispensable for migration. Therefore, this novel Akt-modulating function of CD152 signals affecting T cell migration demonstrates that boosting CD152 or its down-stream signal transduction could aid therapies aimed at sensitizing T lymphocytes for optimal migration, thus contributing to a precise and effective immune response.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Chemokine receptor expression in activated T lymphocytes does not reflect the chemotactic capacities of corresponding chemokines.
CD4+ T lymphocytes from TCRtgCD152-deficient (CD152−/−) and TCRtgCD152-competent (CD152+/+) mice were analyzed to detect chemokine receptor expression by flow cytometry (upper panels) and in chemotaxis assays (lower panels) on day 3 after the initiation of recall responses. A CCR7 expression and migration toward medium or CCL19 were detected in T lymphocytes. B Th1-differentiated CD4+ T lymphocytes were analyzed for CCR7 expression and migration behavior toward medium or CCL19. C Th1 lymphocytes exhibited similar CCR5 expression levels (M1: TCRtgCD152-deficient, 60%; TCRtgCD152-competent, 60%) but different migration rates in transwell systems. Representative data from two experiments are shown.
Figure 2
Figure 2. Effect of induction with the chemokine CCL4 on signaling molecules.
A Th1 lymphocytes from TCRtgCD152-deficient and TCRtgCD152-competent mice were analyzed for ERK phosphorylation on day 2 and day 5 of a recall response. Signaling via CCR5 was induced in serum-starved lymphocytes by treatment with 20 nM CCL4 for 5 (heavy black line) or 20 min (heavy grey line). Filled histograms indicate ERK phosphorylation before CCL4 application. B Migration assay in Th1 lymphocytes from TCRtgCD152-deficient and TCRtgCD152-competent mice on day 5 of a recall response. A portion of the lymphocytes was incubated with the PKCθ-specific inhibitor Rottlerin for 20 h. C Western blot detection of signaling proteins in lysates of TCRtgCD152-deficient and TCRtgCD152-competent Th1 lymphocytes on day 5 of a recall response. The cells were treated as described in Fig. 2 A. D The band intensity of pGRK2 relative to GRK2 was quantified using Image Gauge 4.0. Representative data from at least two experiments are shown.
Figure 3
Figure 3. Chemokine receptor signaling affects signaling molecules involved in cytoskeleton rearrangements.
A Activated Rac was detected by G-LISA in Th1 lymphocytes from TCRtgCD152-deficient and TCRtgCD152-competent mice on day 5 of a recall response. Rac activation was induced in serum-starved lymphocytes by treatment with 20 nM CCL4 for 5 or 20 min. B Th1 lymphocytes from TCRtgCD152-deficient and TCRtgCD152-competent mice on day 5 of a recall response were incubated with or without 20 nM CCL4 for 5 or 20 min. Fixed and permeabilized lymphocytes were analyzed by flow cytometry for Akt activation using antibodies specific for phosphorylated Akt or total Akt. A protion of the lymphocyteswere incubated for 20 h with the PI3K inhibitor Ly294.002 (filled histograms). Histograms show the expression of Akt on T lymphocytes. C Th1 lymphocytes from TCRtgCD152-deficient and TCRtgCD152-competent mice were analyzed to determine their migration affinities for the inflammatory chemokine CCL4 in a transwell system on day 5 of a recall response. A portion of the Th1 lymphocytes were incubated for 20 h with a PI3K inhibitor or Akt inhibitor II, as indicated. The dotted line indicates basal migration toward medium (ns, not significant). Representative data from at least two experiments are shown.
Figure 4
Figure 4. Role of CD28 and CD152 signals in signal transduction via the chemokine receptor CCR5 in Th1 lymphocytes.
Upon binding of its ligand, CCL4, the CCR5 receptor is phosphorylated by CD28-induced GRK2. β-arrestins can now bind to CCR5 and initiate desensitization, which contributes to the degradation or recycling of CCR5. CD152 engagement leads to the inactivation of GRK2, and the phosphorylation of CCR5 is prevented. CD28 and CD152 signal-induced activation of integrins by the Gβγ subunit and via the GTPases Rac1 and Cdc42 or Rap1 ultimately leads to lymphocyte adhesion. Chemokine-induced activation of PI3K and the subsequent phosphorylation and activation of Akt are only initiated in the presence of CD152 signaling, and it is only under these conditions that specific migration occurs along chemokine gradients (orange arrows indicate signal transduction under CD28 signaling, and blue arrows indicate signal transduction under CD152 signaling). The figure shows only those signaling pathways controlled by CD152.

Similar articles

Cited by

References

    1. Bromley SK, Mempel TR, Luster AD. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol. 2008;9:970–980. - PubMed
    1. Weninger W, von Andrian UH. Chemokine regulation of naive T cell traffic in health and disease. Semin Immunol. 2003;15:257–270. - PubMed
    1. Stein JV, Rot A, Luo Y, Narasimhaswamy M, Nakano H, et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J Exp Med. 2000;191:61–76. - PMC - PubMed
    1. Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B, et al. CCR5 is characteristic of Th1 lymphocytes. Nature. 1998;391:344–345. - PubMed
    1. Ribas C, Penela P, Murga C, Salcedo A, Garcia-Hoz C, et al. The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta. 2007;1768:913–922. - PubMed

Publication types