A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation
- PMID: 22366688
- DOI: 10.1038/ncb2445
A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation
Abstract
Large pleiomorphic carriers leave the Golgi complex for the plasma membrane by en bloc extrusion of specialized tubular domains, which then undergo fission. Several components of the underlying molecular machinery have been identified, including those involved in the budding/initiation of tubular carrier precursors (for example, the phosphoinositide kinase PI(4)KIIIβ, the GTPase ARF, and FAPP2), and in the fission of these precursors (for example, PKD, CtBP1-S/BARS). However, how these proteins interact to bring about carrier formation is poorly understood. Here, we describe a protein complex that mediates carrier formation and contains budding and fission molecules, as well as other molecules, such as the adaptor protein 14-3-3γ. Specifically, we show that 14-3-3γ dimers bridge CtBP1-S/BARS with PI(4)KIIIβ, and that the resulting complex is stabilized by phosphorylation by PKD and PAK. Disrupting the association of these proteins inhibits the fission of elongating carrier precursors, indicating that this complex couples the carrier budding and fission processes.
Similar articles
-
Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ.Nat Commun. 2016 Jul 12;7:12148. doi: 10.1038/ncomms12148. Nat Commun. 2016. PMID: 27401954 Free PMC article.
-
The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS.EMBO J. 2008 Apr 9;27(7):970-81. doi: 10.1038/emboj.2008.59. Epub 2008 Mar 20. EMBO J. 2008. PMID: 18354494 Free PMC article.
-
Components of the CtBP1/BARS-dependent fission machinery.Histochem Cell Biol. 2013 Oct;140(4):407-21. doi: 10.1007/s00418-013-1138-1. Epub 2013 Sep 1. Histochem Cell Biol. 2013. PMID: 23996193 Review.
-
Mitotic Golgi translocation of ERK1c is mediated by a PI4KIIIβ-14-3-3γ shuttling complex.J Cell Sci. 2015 Nov 15;128(22):4083-95. doi: 10.1242/jcs.170910. Epub 2015 Oct 12. J Cell Sci. 2015. PMID: 26459638
-
Golgi complex fragmentation in G2/M transition: An organelle-based cell-cycle checkpoint.IUBMB Life. 2012 Aug;64(8):661-70. doi: 10.1002/iub.1054. Epub 2012 Jun 23. IUBMB Life. 2012. PMID: 22730233 Review.
Cited by
-
Regulation of Golgi signaling and trafficking by the KDEL receptor.Histochem Cell Biol. 2013 Oct;140(4):395-405. doi: 10.1007/s00418-013-1130-9. Epub 2013 Jul 20. Histochem Cell Biol. 2013. PMID: 23873287 Review.
-
Lipid-dependent coupling of secretory cargo sorting and trafficking at the trans-Golgi network.FEBS Lett. 2019 Sep;593(17):2412-2427. doi: 10.1002/1873-3468.13552. Epub 2019 Jul 30. FEBS Lett. 2019. PMID: 31344259 Free PMC article. Review.
-
Actin-driven Golgi apparatus dispersal during collective migration of epithelial cells.Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2204808119. doi: 10.1073/pnas.2204808119. Epub 2022 Jun 24. Proc Natl Acad Sci U S A. 2022. PMID: 35749357 Free PMC article.
-
Endogenous and Exogenous Regulatory Signaling in the Secretory Pathway: Role of Golgi Signaling Molecules in Cancer.Front Cell Dev Biol. 2022 Mar 23;10:833663. doi: 10.3389/fcell.2022.833663. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 35399533 Free PMC article. Review.
-
Unraveling the Multifaceted Role of the Golgi Apparatus: Insights into Neuronal Plasticity, Development, Neurogenesis, Alzheimer's Disease, and SARS-CoV-2 Interactions.Brain Sci. 2023 Sep 23;13(10):1363. doi: 10.3390/brainsci13101363. Brain Sci. 2023. PMID: 37891732 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous