To sprout or to split? VEGF, Notch and vascular morphogenesis
- PMID: 22103501
- DOI: 10.1042/BST20110650
To sprout or to split? VEGF, Notch and vascular morphogenesis
Abstract
Therapeutic angiogenesis is an attractive strategy to treat patients suffering from peripheral or coronary artery disease. VEGF (vascular endothelial growth factor-A) is the fundamental factor controlling vascular growth in both development and postnatal life. The interplay between the VEGF and Notch signalling pathway has been recently found to regulate the morphogenic events leading to the growth of new vessels by sprouting. Angiogenesis can also take place by an alternative process, i.e. intussusception or vascular splitting. However, little is known about its role in therapeutic angiogenesis and its molecular regulation. In the present article, we briefly review how VEGF dose determines the induction of normal or aberrant angiogenesis and the molecular regulation of sprouting angiogenesis by Notch signalling, and compare this process with intussusception.
Similar articles
-
"Sprouting angiogenesis", a reappraisal.Dev Biol. 2012 Dec 15;372(2):157-65. doi: 10.1016/j.ydbio.2012.09.018. Epub 2012 Sep 29. Dev Biol. 2012. PMID: 23031691 Review.
-
Developmental coronary maturation is disturbed by aberrant cardiac vascular endothelial growth factor expression and Notch signalling.Cardiovasc Res. 2008 May 1;78(2):366-75. doi: 10.1093/cvr/cvm108. Epub 2007 Dec 18. Cardiovasc Res. 2008. PMID: 18093989
-
VEGF over-expression in skeletal muscle induces angiogenesis by intussusception rather than sprouting.Angiogenesis. 2013 Jan;16(1):123-36. doi: 10.1007/s10456-012-9304-y. Epub 2012 Sep 9. Angiogenesis. 2013. PMID: 22961440
-
VEGFRs and Notch: a dynamic collaboration in vascular patterning.Biochem Soc Trans. 2009 Dec;37(Pt 6):1233-6. doi: 10.1042/BST0371233. Biochem Soc Trans. 2009. PMID: 19909253 Review.
-
Vascular morphogenesis in the primate ovary.Angiogenesis. 2005;8(2):101-16. doi: 10.1007/s10456-005-9004-y. Epub 2005 Oct 21. Angiogenesis. 2005. PMID: 16240058 Review.
Cited by
-
Blood and Lymphatic Vasculatures On-Chip Platforms and Their Applications for Organ-Specific In Vitro Modeling.Micromachines (Basel). 2020 Jan 29;11(2):147. doi: 10.3390/mi11020147. Micromachines (Basel). 2020. PMID: 32013154 Free PMC article. Review.
-
Phenomena of Intussusceptive Angiogenesis and Intussusceptive Lymphangiogenesis in Blood and Lymphatic Vessel Tumors.Biomedicines. 2024 Jan 23;12(2):258. doi: 10.3390/biomedicines12020258. Biomedicines. 2024. PMID: 38397861 Free PMC article.
-
Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment?Cancer Med. 2013 Aug;2(4):427-36. doi: 10.1002/cam4.105. Epub 2013 Jul 8. Cancer Med. 2013. PMID: 24156015 Free PMC article. Review.
-
VEGF and SEMA4D have synergistic effects on the promotion of angiogenesis in epithelial ovarian cancer.Cell Mol Biol Lett. 2018 Jan 3;23:2. doi: 10.1186/s11658-017-0058-9. eCollection 2018. Cell Mol Biol Lett. 2018. PMID: 29308068 Free PMC article.
-
CXCL8 and the peritoneal metastasis of ovarian and gastric cancer.Front Immunol. 2023 Jun 12;14:1159061. doi: 10.3389/fimmu.2023.1159061. eCollection 2023. Front Immunol. 2023. PMID: 37377954 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources