Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions
- PMID: 22086369
- DOI: 10.1038/nrm3227
Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions
Abstract
Half a century of biochemical and biophysical experiments has provided attractive models that may explain the diverse functions of microtubules within cells and organisms. However, the notion of functionally distinct microtubule types has not been explored with similar intensity, mostly because mechanisms for generating divergent microtubule species were not yet known. Cells generate distinct microtubule subtypes through expression of different tubulin isotypes and through post-translational modifications, such as detyrosination and further cleavage to Δ2-tubulin, acetylation, polyglutamylation and polyglycylation. The recent discovery of enzymes responsible for many tubulin post-translational modifications has enabled functional studies demonstrating that these post-translational modifications may regulate microtubule functions through an amazing range of mechanisms.
Similar articles
-
Tubulin post-translational modifications control neuronal development and functions.Dev Neurobiol. 2021 Apr;81(3):253-272. doi: 10.1002/dneu.22774. Epub 2020 Aug 29. Dev Neurobiol. 2021. PMID: 33325152 Free PMC article. Review.
-
Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton.Trends Neurosci. 2010 Aug;33(8):362-72. doi: 10.1016/j.tins.2010.05.001. Epub 2010 Jun 11. Trends Neurosci. 2010. PMID: 20541813 Review.
-
Decoding microtubule detyrosination: enzyme families, structures, and functional implications.FEBS Lett. 2024 Jun;598(12):1453-1464. doi: 10.1002/1873-3468.14940. Epub 2024 May 29. FEBS Lett. 2024. PMID: 38811347 Review.
-
Microtubule polyglutamylation and acetylation drive microtubule dynamics critical for platelet formation.BMC Biol. 2018 Oct 18;16(1):116. doi: 10.1186/s12915-018-0584-6. BMC Biol. 2018. PMID: 30336771 Free PMC article.
-
The tubulin code at a glance.J Cell Sci. 2017 Apr 15;130(8):1347-1353. doi: 10.1242/jcs.199471. Epub 2017 Mar 21. J Cell Sci. 2017. PMID: 28325758 Review.
Cited by
-
Mice lacking α-tubulin acetyltransferase 1 are viable but display α-tubulin acetylation deficiency and dentate gyrus distortion.J Biol Chem. 2013 Jul 12;288(28):20334-50. doi: 10.1074/jbc.M113.464792. Epub 2013 May 28. J Biol Chem. 2013. PMID: 23720746 Free PMC article.
-
The genetic architecture of structural left-right asymmetry of the human brain.Nat Hum Behav. 2021 Sep;5(9):1226-1239. doi: 10.1038/s41562-021-01069-w. Epub 2021 Mar 15. Nat Hum Behav. 2021. PMID: 33723403 Free PMC article.
-
Tubulin carboxypeptidase activity of vasohibin-1 inhibits angiogenesis by interfering with endocytosis and trafficking of pro-angiogenic factor receptors.Angiogenesis. 2021 Feb;24(1):159-176. doi: 10.1007/s10456-020-09754-6. Epub 2020 Oct 14. Angiogenesis. 2021. PMID: 33052495
-
Phosphinic acid-based inhibitors of tubulin polyglutamylases.Bioorg Med Chem Lett. 2013 Aug 1;23(15):4408-12. doi: 10.1016/j.bmcl.2013.05.069. Epub 2013 May 30. Bioorg Med Chem Lett. 2013. PMID: 23777780 Free PMC article.
-
Tubulin tyrosine ligase like 12, a TTLL family member with SET- and TTL-like domains and roles in histone and tubulin modifications and mitosis.PLoS One. 2012;7(12):e51258. doi: 10.1371/journal.pone.0051258. Epub 2012 Dec 12. PLoS One. 2012. PMID: 23251473 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources