In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity
- PMID: 22056389
- PMCID: PMC5480292
- DOI: 10.1016/j.virol.2011.10.006
In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity
Erratum in
- Virology. 2012 Mar 15;424(2):154
Abstract
Acquisition of α2-6 sialoside receptor specificity by α2-3 specific highly-pathogenic avian influenza viruses (H5N1) is thought to be a prerequisite for efficient transmission in humans. By in vitro selection for binding α2-6 sialosides, we identified four variant viruses with amino acid substitutions in the hemagglutinin (S227N, D187G, E190G, and Q196R) that revealed modestly increased α2-6 and minimally decreased α2-3 binding by glycan array analysis. However, a mutant virus combining Q196R with mutations from previous pandemic viruses (Q226L and G228S) revealed predominantly α2-6 binding. Unlike the wild type H5N1, this mutant virus was transmitted by direct contact in the ferret model although not by airborne respiratory droplets. However, a reassortant virus with the mutant hemagglutinin, a human N2 neuraminidase and internal genes from an H5N1 virus was partially transmitted via respiratory droplets. The complex changes required for airborne transmissibility in ferrets suggest that extensive evolution is needed for H5N1 transmissibility in humans.
Published by Elsevier Inc.
Figures




Similar articles
-
H5N1 receptor specificity as a factor in pandemic risk.Virus Res. 2013 Dec 5;178(1):99-113. doi: 10.1016/j.virusres.2013.02.015. Epub 2013 Apr 22. Virus Res. 2013. PMID: 23619279 Free PMC article. Review.
-
Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets.Nature. 2012 May 2;486(7403):420-8. doi: 10.1038/nature10831. Nature. 2012. PMID: 22722205 Free PMC article.
-
Airborne transmission of influenza A/H5N1 virus between ferrets.Science. 2012 Jun 22;336(6088):1534-41. doi: 10.1126/science.1213362. Science. 2012. PMID: 22723413 Free PMC article.
-
Newly Emergent Highly Pathogenic H5N9 Subtype Avian Influenza A Virus.J Virol. 2015 Sep;89(17):8806-15. doi: 10.1128/JVI.00653-15. Epub 2015 Jun 17. J Virol. 2015. PMID: 26085150 Free PMC article.
-
[Host-adaptive mechanism of H5N1 avian influenza virus hemagglutininn].Uirusu. 2015;65(2):187-198. doi: 10.2222/jsv.65.187. Uirusu. 2015. PMID: 27760917 Review. Japanese.
Cited by
-
Increased acid stability of the hemagglutinin protein enhances H5N1 influenza virus growth in the upper respiratory tract but is insufficient for transmission in ferrets.J Virol. 2013 Sep;87(17):9911-22. doi: 10.1128/JVI.01175-13. Epub 2013 Jul 3. J Virol. 2013. PMID: 23824818 Free PMC article.
-
H5N1 receptor specificity as a factor in pandemic risk.Virus Res. 2013 Dec 5;178(1):99-113. doi: 10.1016/j.virusres.2013.02.015. Epub 2013 Apr 22. Virus Res. 2013. PMID: 23619279 Free PMC article. Review.
-
Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets.Nature. 2012 May 2;486(7403):420-8. doi: 10.1038/nature10831. Nature. 2012. PMID: 22722205 Free PMC article.
-
Genotype Diversity, Wild Bird-to-Poultry Transmissions, and Farm-to-Farm Carryover during the Spread of the Highly Pathogenic Avian Influenza H5N1 in the Czech Republic in 2021/2022.Viruses. 2023 Jan 20;15(2):293. doi: 10.3390/v15020293. Viruses. 2023. PMID: 36851507 Free PMC article.
-
Virus-Receptor Interactions: The Key to Cellular Invasion.J Mol Biol. 2018 Aug 17;430(17):2590-2611. doi: 10.1016/j.jmb.2018.06.024. Epub 2018 Jun 18. J Mol Biol. 2018. PMID: 29924965 Free PMC article. Review.
References
-
- Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A. 2004;101:17033–17038. - PMC - PubMed
-
- Carroll SM, Paulson JC. Differential infection of receptor-modified host cells by receptor-specific influenza viruses. Virus Res. 1985;3:165–179. - PubMed
-
- Chen LM, Rivailler P, Hossain J, Carney P, Balish A, Perry I, Davis CT, Garten R, Shu B, Xu X, Klimov A, Paulson JC, Cox NJ, Swenson S, Stevens J, Vincent A, Gramer M, Donis RO. Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. Virology. 2011;412:401–410. - PMC - PubMed
-
- Collins BEBE, Blixt OO, Han SS, Duong BB, Li HH, Nathan JKJK, Bovin NN, Paulson JCJC. High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J Immunol. 2006;177:2994–3003. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical