Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Nov;6(7):746-56.
doi: 10.3109/17435390.2011.620717. Epub 2011 Sep 27.

Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice

Affiliations

Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice

Ching-Hao Li et al. Nanotoxicology. 2012 Nov.

Abstract

Abstract Understanding tissue biodistribution and clearance of zinc oxide nanoparticles (ZnO-NPs) is necessary for its risk assessment. Both fed and intraperitoneally injected ZnO-NPs (2.5 g/kg) were absorbed into circulation (within 30 min post-dosing), then biodistributed to the liver, spleen, and kidney. Intraperitoneally injected ZnO-NPs remained in serum for 72 h and could more effectively spread to the heart, lung, and testes, whereas the clearance for fed ZnO-NPs in serum began 6 h after oral administration. Compared with zinc oxide microparticles (ZnO-MPs), ZnO-NPs exhibited much higher absorptivity and tissue biodistribution in fed treatment. A greater fraction of fed ZnO-NPs localised in the liver resulted in transient histopathological lesions. However, superoxide generation and cytotoxicity were showed in vitro treatment with ZnO-NPs (above 20 μg/mL). Considering both in vitro and in vivo data, the ZnO-NPs induced acute liver toxicity which was in compliance with its absorption, biodistribution, and clearance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources