Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul;7(7):e1002155.
doi: 10.1371/journal.ppat.1002155. Epub 2011 Jul 14.

Cross-species transmission of a novel adenovirus associated with a fulminant pneumonia outbreak in a new world monkey colony

Affiliations

Cross-species transmission of a novel adenovirus associated with a fulminant pneumonia outbreak in a new world monkey colony

Eunice C Chen et al. PLoS Pathog. 2011 Jul.

Erratum in

  • PLoS Pathog. 2011 Aug;7(8), doi:10.1371/annotation/59703f7f-9506-49d1-b339-09ee31510e89
  • PLoS Pathog. 2011 Aug;7(8); doi:10.1371/annotation/c9a506d7-e8ba-4aaf-ab04-8ed0b383f5d9. Tarara, Ross P [added]; Canfield, Don R [added]

Abstract

Adenoviruses are DNA viruses that naturally infect many vertebrates, including humans and monkeys, and cause a wide range of clinical illnesses in humans. Infection from individual strains has conventionally been thought to be species-specific. Here we applied the Virochip, a pan-viral microarray, to identify a novel adenovirus (TMAdV, titi monkey adenovirus) as the cause of a deadly outbreak in a closed colony of New World monkeys (titi monkeys; Callicebus cupreus) at the California National Primate Research Center (CNPRC). Among 65 titi monkeys housed in a building, 23 (34%) developed upper respiratory symptoms that progressed to fulminant pneumonia and hepatitis, and 19 of 23 monkeys, or 83% of those infected, died or were humanely euthanized. Whole-genome sequencing of TMAdV revealed that this adenovirus is a new species and highly divergent, sharing <57% pairwise nucleotide identity with other adenoviruses. Cultivation of TMAdV was successful in a human A549 lung adenocarcinoma cell line, but not in primary or established monkey kidney cells. At the onset of the outbreak, the researcher in closest contact with the monkeys developed an acute respiratory illness, with symptoms persisting for 4 weeks, and had a convalescent serum sample seropositive for TMAdV. A clinically ill family member, despite having no contact with the CNPRC, also tested positive, and screening of a set of 81 random adult blood donors from the Western United States detected TMAdV-specific neutralizing antibodies in 2 individuals (2/81, or 2.5%). These findings raise the possibility of zoonotic infection by TMAdV and human-to-human transmission of the virus in the population. Given the unusually high case fatality rate from the outbreak (83%), it is unlikely that titi monkeys are the native host species for TMAdV, and the natural reservoir of the virus is still unknown. The discovery of TMAdV, a novel adenovirus with the capacity to infect both monkeys and humans, suggests that adenoviruses should be monitored closely as potential causes of cross-species outbreaks.

PubMed Disclaimer

Conflict of interest statement

The authors received a viral discovery award from Abbott Diagnostics (to CYC). The University of California, San Francisco (UCSF) has also filed a patent application related to TMAdV. This does not alter the authors' adherence to all PloS Pathogens policies on sharing data and materials.

Figures

Figure 1
Figure 1. Clinical and epidemiologic features of the titi monkey outbreak.
(A) Map of the titi monkey cages situated in one quadrant of a building, showing the locations of asymptomatic, at-risk monkeys (brown or green), affected surviving monkeys (black), and monkeys who died from their illness (skeleton). 3 monkeys were moved into the building (arrows pointing down and to the left) and 4 monkeys out of the building (arrows pointing up and to the right) during the 3rd week of the outbreak. The upper left photograph shows an image of an adult male titi monkey and his infant. The upper right inset shows the location of the titi monkey cages relative to other rhesus monkey cages in the building. Asymptomatic monkeys with positive serum antibody titers to TMAdV 4 months after the outbreak are shown in green. (B) Epidemic curve of the outbreak, with the number of cases in blue and cumulative attack rate in red. (C) Anteroposterior chest radiograph of an affected titi monkey, showing bilateral basilar infiltrates and a prominent right middle lobe consolidation. (D) 1 – gross photograph of lungs at necropsy; the lungs failed to fully collapse upon opening the chest, and a single ∼1.5 cm focus of dark red discoloration (hemorrhage) can be seen in the left caudal lobe. 2 – photomicrograph of H&E stained lung tissue showing a severe diffuse necrotizing bronchopneumonia characterized by the presence of hemorrhage and intranuclear inclusions (arrows). 3 – photomicrograph of H&E stained liver tissue showing a multifocal necrotizing hepatitis with numerous intranuclear inclusions (arrows). 4 – transmission electron micrograph of an affected lung alveolus (scale bar  = 1 µm) filled with adenovirus-like particles (inset, scale bar  = 0.1 µm).
Figure 2
Figure 2. Discovery and whole-genome characterization of the novel adenovirus TMAdV.
(A) The locations of the 4 Virochip probes derived from adenovirus sequences and used to detect TMAdV are mapped onto the ∼37 kB genome. The 4 Virochip probe sequences are also aligned with the corresponding sequence in the TMAdV genome, with mismatches highlighted in pink. (B) Coverage map of deep sequencing reads corresponding to TMAdV using BLASTN (blue) and TBLASTX (transparent blue) alignments to SAdV-18. The actual coverage achieved by deep sequencing as determined by alignments to the fully sequenced genome of TMAdV is much higher (red). (C) Genome organization of TMAdV. Predicted protein coding regions are shown as boxes. Boxes above the central black line represent open reading frames (ORFs) that are encoded on the forward strand, while boxes underneath the black line represent reverse-strand encoded ORFs. Early region ORFs are shaded in gray. The x-axis refers to the nucleotide position along the ∼37k genome of TMAdV. Abbreviations: FAdV, fowl adenovirus; SAdV, simian adenovirus; PAdV, porcine adenovirus; HAdV, human adenovirus, TMAdV, titi monkey adenovirus.
Figure 3
Figure 3. Whole-genome phylogenetic analysis of TMAdV.
The whole-genome nucleotide phylogenetic tree is reconstructed from a multiple sequence alignment of all 95 unique, fully-sequenced adenovirus genomes in GenBank and TMAdV. Both rectangular cladogram and radial tree layouts are displayed. The branch corresponding to TMAdV is highlighted in boldface red. Abbreviations: HAdV, human adenovirus; SAdV, simian adenovirus; MAdV, mouse adenovirus, FrAdV, frog adenovirus; TAdV, turkey adenovirus; SnAdV, snake adenovirus; DAdV, duck adenovirus; OAdV, ovine adenovirus; BAdV, bovine adenovirus; PAdV, porcine adenovirus; TSAdV, tree shrew adenovirus; CAdV, canine adenovirus.
Figure 4
Figure 4. Scanning pairwise alignment of representative adenoviruses with TMAdV.
The scanning nucleotide pairwise identities of TMAdV relative to representative human (yellow) or simian (brown) adenoviruses in species A–G, porcine adenovirus (red), and fowl adenovirus (green) are shown. The window size is 400 bp with a step size of 40 bp. The x-axis refers to the nucleotide position along the ∼37 k genome of TMAdV. Abbreviations: HAdV, human adenovirus; SAdV, simian adenovirus; PAdV, porcine adenovirus; FAdV, fowl adenovirus.
Figure 5
Figure 5. Growth and propagation of TMAdV in cell culture.
The flow chart displays 10 passages (P1–P10) of TMAdV cultured in human lung adenocarcinoma (A549, orange), primary rhesus macaque kidney (PMK, brown), or established African green monkey kidney (BSC-1, green) cells.
Figure 6
Figure 6. Seroprevalence of TMAdV in humans and monkeys.
Sera from titi monkeys (circles), rhesus macaques (squares), and humans (triangles) were tested for antibodies to TMAdV by virus neutralization. Arrows designate pre-outbreak and post-outbreak serum samples from the same individual monkey. Pre-outbreak serum samples were previously banked in 2007. Sera from CNPRC personnel and close contacts (orange triangles) were collected 4 months post-outbreak, except for the two family members of the clinically ill researcher, whose sera were collected 1 year post-outbreak. *, clinically ill researcher; **, family member of the researcher, who was also sick. Abbreviations: CNPRC, California National Primate Research Center; NEG, negative.

Similar articles

Cited by

References

    1. Robinson CM, Singh G, Henquell C, Walsh MP, Peigue-Lafeuille H, et al. Computational analysis and identification of an emergent human adenovirus pathogen implicated in a respiratory fatality. Virology. 2011;409:141–147. - PMC - PubMed
    1. Harrach B, Benkõ M, Both G, Brown M, Davison A, et al. Family Adenoviridae. In: King A, Carstens E, Adams M, Lefkowitz E, editors. Virus Taxonomy: 9th Report of the International Committee on Taxonomy of Viruses. New York: Elsevier; 2011.
    1. Fox JP, Hall CE, Cooney MK. The Seattle Virus Watch. VII. Observations of adenovirus infections. Am J Epidemiol. 1977;105:362–386. - PubMed
    1. Lewis PF, Schmidt MA, Lu X, Erdman DD, Campbell M, et al. A community-based outbreak of severe respiratory illness caused by human adenovirus serotype 14. J Infect Dis. 2009;199:1427–1434. - PubMed
    1. Ruuskanen O, Meurman O, Akusjarvi G. Adenoviruses. In: Richman DD, Whitley RJ, Hayden FG, editors. Clinical Virology. New York: Churchill Livingstone; 1997. 1355 xvi.

Publication types

MeSH terms