Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec;37(6):505-11.
doi: 10.1016/j.diabet.2011.03.006. Epub 2011 Jun 1.

Pigment epithelium-derived factor inhibits advanced glycation end-products-induced cytotoxicity in retinal pericytes

Affiliations

Pigment epithelium-derived factor inhibits advanced glycation end-products-induced cytotoxicity in retinal pericytes

S Sheikpranbabu et al. Diabetes Metab. 2011 Dec.

Abstract

Aim: This study investigated the effects of pigment epithelium-derived factor (PEDF) on advanced glycation end-product (AGE)-induced cytotoxicity in porcine retinal pericytes and the signalling mechanism involved.

Methods: Retinal pericytes were isolated from porcine eyes and characterized by immunocytochemistry. The effect of AGEs and PEDF on cell proliferation was determined by bromodeoxyuridine (BrdU) assay. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was analyzed by luminescence assay. Reactive oxygen species (ROS), nitric oxide (NO), superoxide dismutase (SOD) and glutathione peroxidase (GSH) were determined by biochemical assays. Induction of apoptosis was determined by caspase-3 colorimetric assay and DNA fragmentation analysis. Src activity was assessed by transient transfection analysis, and the status of Src phosphorylation at Y419 was analyzed by a competitive ELISA method.

Results: AGEs significantly increased intracellular ROS generation in pericytes via NADPH oxidase and induced cell death via caspase-3 enzyme activation, whereas PEDF increased cell proliferation in a dose-dependent manner. In addition, PEDF inhibited AGE-induced ROS generation by increasing levels of SOD and GSH, and also blocked the activation of caspase-3. Furthermore, PEDF induced cell survival via the Src pathway by Src phosphorylation at Y419, as evidenced by a pharmacological inhibitor and Src mutants.

Conclusion: These results suggest that PEDF abrogates AGE-induced oxidative stress and apoptosis in retinal pericytes via the Src pathway, thereby suggesting that PEDF is an effective therapeutic agent for the treatment of loss of pericytes in early diabetic retinopathy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms