Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Nov;85(5):267-73.
doi: 10.1016/j.plefa.2011.04.011. Epub 2011 May 4.

Lipids in critical care medicine

Affiliations
Review

Lipids in critical care medicine

Juliane Ott et al. Prostaglandins Leukot Essent Fatty Acids. 2011 Nov.

Abstract

While enteral nutrition is the basis for the critically ill, parenteral nutrition is often used when a sufficient enteral nutrition is not or not fully achievable. Lipids are a mainstay of caloric supply in both cases as they combine the provision of building blocks for the membranes and are precursors for function molecules including lipid mediators bearing the ability to influence immunity. Pro-inflammatory lipid mediators as prostaglandins and leukotrienes are generated from arachidonic acid (AA), a key member of the n-6 polyunsaturated fatty acids (PUFA). In contrast, lipid mediators derived from the n-3 fatty acids eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) may exhibit less inflammatory properties compared to their AA-derived counterparts. Furthermore, intercellular mediators as resolvins and protectins are generated from n-3 fatty acids. They induce the resolution of inflammation, hence the name resolution phase interaction product-resolvin. Modulating the amount of PUFA and the n-6/n-3 ratio were investigated as means to change the inflammatory response and improve the outcome of patients. Experimental data showed that n-3 fatty acids may improve acute lung injury and sepsis in animal models. Studies in patients undergoing major surgery with application of n-3 fatty acids demonstrated beneficial effects in terms of reduction of length of stay and infectious complications. Clinical data hints that this concept may also improve outcome in critically ill patients. Additionally, experimental and clinical data suggest that a reduction in n-6 PUFA may change the immune response. In conclusion, modulating the amount of PUFA, the n-6/n-3 ratio and the composition of lipid emulsions may prove to be a useful means to improve the outcome of critically ill patients.

PubMed Disclaimer

Similar articles

Cited by