Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov;255(2):756-68.

Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils

Affiliations
  • PMID: 2147038

Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils

J E Bleasdale et al. J Pharmacol Exp Ther. 1990 Nov.

Abstract

Aggregation of human platelets induced by a variety of agonists was inhibited by 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl] amino]hexyl]-1H-pyrrole-2,5-dionel (U-73122) (IC50 values 1-5 microM), but not by the close analog 1-[6-[[17 beta-3-methoxyestra- 1,3,5(10)-trien-17-yl]amino]hexyl]-2,5-pyrrolidine-dione (U-73343) in which pyrrolidinedione was substituted for pyrroledione. Inhibition by U-73122 was not mediated by an increase in intracellular cyclic AMP. In contrast, the production of inositol 1,4,5-trisphosphate (IP3) and the subsequent rapid increase in cytosolic Ca++ induced by either thrombin or the thromboxane-mimetic, (5Z,9 alpha, 11 alpha, 13E, 15S) 15-hydroxy-11,9-(epoxymethano)prosta- 5,13,-dien-1-oic acid (U-46619), was inhibited by U-73122 but not by U-73343. Reduction of IP3 levels appeared to reflect an inhibition of IP3 production because the hydrolysis of phosphatidyl[3H]inositol and phosphatidyl[3H]inositol 4,5-bisphosphate catalyzed by a soluble fraction from platelets was inhibited by U-73122 (Ki = 9 and 40 microM, respectively). In addition, U-73122 inhibited thromboxane B2 production induced by collagen but not that supported by exogenously added arachidonic acid, suggesting that U-73122 also inhibited receptor-coupled mobilization of arachidonic acid. After preincubation of platelets with [3H]arachidonic acid, the loss of [3H]phosphatidylinositol and accumulation of [3H]phosphatidic acid induced by thrombin was attenuated by U-73122. U-73122 did not inhibit the activities of phospholipases A2 purified either from porcine pancreas or from the venoms of Crotalus adamanteus and Naja naja. Although U-73122 inhibited neither the conversion of exogenous arachidonic acid to thromboxane B2 nor the binding of the thromboxane receptor antagonist [1S-[1 alpha, 2 beta (5Z), 3 beta, 4 alpha]]-7-[3-[[2- [2-[(phenylamino)-carbonyl]- hydrazino]methyl]-7-oxabicyclo [2.2.1]-hept-2-yl-5-heptenoic acid to platelet membranes, it was an effective inhibitor of arachidonic acid-induced aggregation of platelets. These data are consistent with the observed inhibition by U-73122 of platelet activation by the thromboxane receptor agonist, U-46619, via a mechanism that involves inhibition of a phospholipase C-dependent component(s) of signal transduction. U-73122, but not U-73343, inhibited also N-formyl-methionyl-leucyl-phenylalanine-induced aggregation of human polymorphonuclear neutrophils (PMN) and the associated production of IP3 and diacyglycerol. Diradylglycerol produced in PMN stimulated with N-formyl- methionyl-leucyl-phenylalanine was 74 +/- 7% saponifiable and inhibited by U-73122 (Ki = 2 microM).(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources