Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar-Apr;2(2):166-9.
doi: 10.4161/viru.2.2.15481. Epub 2011 Mar 1.

Differential recognition of viral RNA by RIG-I

Affiliations

Differential recognition of viral RNA by RIG-I

Alina Baum et al. Virulence. 2011 Mar-Apr.

Abstract

Retinoic acid inducible gene I (RIG-I) is a pattern recognition receptor (PRR) responsible for detection of nucleic acids from pathogens in the cytoplasm of infected cells and induction of type I interferon (IFN). RIG-I -specific pathogen associated molecular patterns (PAMPs) are characterized by RNA molecules with a 5'-triphosphate (5'-ppp) group and partial double-stranded composition. Although many RNA molecules capable of activating RIG-I have been described, the exact nature of viral RNAs which are responsible for triggering RIG-I activity during the course of an infection has not been extensively explored and the specificity of RIG-I for various viral RNA molecules remains largely unknown. By examining endogenous RIG-I/RNA complexes in influenza virus and Sendai virus infected cells we were able to identify viral RNA molecules which specifically associated with RIG-I during infection. We showed that in Sendai virus infected cells, RIG-I specifically and preferentially associated with the copy-back defective interfering (DI) particle RNA and not with the full-length Sendai virus genome or Sendai virus encoded mRNAs. In influenza virus infected cells RIG-I also preferentially associated with DI RNAs as well as with the shorter genomic segments.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Association of RIG-I with influenza and Sendai virus RNAs in infected cells. Viral RNAs produced in the course of infection by Sendai and influenza viruses are shown. These RNAs include genome (vRNA), antigenome (cRNA), mRNAs, DI RNAs, small viral RNAs (svRNA) of influenza virus– as well as leader and trailer RNAs produced by Sendai virus. RNAs that we have found to associate with RIG-I during infection are depicted in red, with darker color and thicker lines representing greater extent of RIG-I association.

Comment on

Similar articles

Cited by

References

    1. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5:730–737. - PubMed
    1. Foy E, Li K, Sumpter R, Jr, Loo YM, Johnson CL, Wang C, et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc Natl Acad Sci USA. 2005;102:2986–2991. - PMC - PubMed
    1. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–105. - PubMed
    1. Takahasi K, Yoneyama M, Nishihori T, Hirai R, Kumeta H, Narita R, et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell. 2008;29:428–440. - PubMed
    1. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science. 2006;314:994–997. - PubMed

Publication types

LinkOut - more resources