Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Mar 14;2(2):13.
doi: 10.1186/scrt54.

Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment

Affiliations
Review

Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment

Jonathan Hoggatt et al. Stem Cell Res Ther. .

Abstract

The vast majority of hematopoietic stem cells (HSCs) reside in specialized niches within the bone marrow during steady state, maintaining lifelong blood cell production. A small number of HSCs normally traffic throughout the body; however, exogenous stimuli can enhance their release from the niche and entry into the peripheral circulation. This process, termed mobilization, has become the primary means to acquire a stem cell graft for hematopoietic transplant at most transplant centers. Currently, the preferred method of HSC mobilization for subsequent transplantation is treatment of the donor with granulocyte colony-stimulating factor. The mobilizing effect of granulocyte colony-stimulating factor is not completely understood, but recent studies suggest that its capacity to mobilize HSCs, at least in part, is a consequence of alterations to the hematopoietic niche. The present article reviews some of the key mechanisms mediating HSC mobilization, highlighting recent advances and controversies in the field.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Hematopoietic stem and progenitor mobilization converges on the CXCR4/SDF-1α signaling axis within the hematopoietic niche. Many of the proposed mechanisms for hematopoietic stem and progenitor mobilization function by altering the marrow microenvironmental CXC4 chemokine receptor (CXCR4)/stromal cell-derived factor 1α (SDF-1α) signaling axis. Shown are representative mobilization mechanisms and their relationship to the CXCR4/SDF-1α axis. Question marks denote hypothetical linkage to the CXCR4/SDF-1α axis. G-CSF, granulocyte colony-stimulating factor; HSC, hematopoietic stem cell; HSPC, hematopoietic stem and progenitor cell; ROS, reactive oxygen species.

Similar articles

Cited by

References

    1. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7–25. - PubMed
    1. Yoder MC, Williams DA. Matrix molecule interactions with hematopoietic stem cells. Exp Hematol. 1995;23:961–967. - PubMed
    1. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–846. doi: 10.1038/nature02040. - DOI - PubMed
    1. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–841. doi: 10.1038/nature02041. - DOI - PubMed
    1. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 2004;103:3258–3264. doi: 10.1182/blood-2003-11-4011. - DOI - PubMed

Publication types