Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr 18;42(5):540-6.
doi: 10.1016/j.ejps.2011.02.009. Epub 2011 Feb 23.

Curcumin activates Wnt/β-catenin signaling pathway through inhibiting the activity of GSK-3β in APPswe transfected SY5Y cells

Affiliations

Curcumin activates Wnt/β-catenin signaling pathway through inhibiting the activity of GSK-3β in APPswe transfected SY5Y cells

Xiong Zhang et al. Eur J Pharm Sci. .

Abstract

Wnt/β-catenin signaling pathway plays an important role in the genesis and development of Alzheimer's disease. The study aims to investigate the effect of Curcumin on the expression of GSK-3β, β-catenin and CyclinD1 in vitro, which are tightly correlated with Wnt/β-catenin signaling pathway, and also to explore the mechanisms, which will provide a novel therapeutic intervention for treatment of Alzheimer's disease. Plasmid APPswe and BACE1-mychis were transiently co-transfected into SHSY5Y cells by Liposfectamin™2000. The cells were treated with Curcumin at 0, 1.25, 5.0, 20.0 μmol/L for 24 h, or with Curcumin at 5.0 μmol/L for 0, and 12, 24 and 48 h for time course assay. Cell lysates were collected for RT-PCR, Western blot assay and immunofluorescent staining were carried out for detecting the effect of Curcumin on the expression of GSK-3β, β-catenin and CyclinD1. RT-PCR and Western blot results showed that the expression of GSK-3β mRNA and protein significantly decreased in the transfected cells treated with Curcumin, and that the changes were in a dose and time-dependent manner (P<0.05); however, the protein expression of GSK-3β-Ser9 was increased (P<0.05). Meanwhile, the expressions of β-catenin and transcriptional factors CyclinD1 mRNA and protein increased and the changes were also in a dose and time-dependent manner (P<0.05). Immunofluorescent staining results not only confirmed the above changes, but also showed that β-catenin had translocated into the nucleus gradually with the increased dosage of Curcumin. Therefore, GSK-3β is a potential target for treatment of AD. Curcumin could activate the Wnt/β-catenin signaling pathway through inhibiting the expression of GSK-3β and inducing the expression of β-catenin and CyclinD1, which will provide a new theory for treatment of neurodegenerative diseases by Curcumin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms