Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb;15(1):55-68.
doi: 10.1017/S1461145711000022. Epub 2011 Feb 1.

Aquaporin-4 deficiency exacerbates brain oxidative damage and memory deficits induced by long-term ovarian hormone deprivation and D-galactose injection

Affiliations
Free article

Aquaporin-4 deficiency exacerbates brain oxidative damage and memory deficits induced by long-term ovarian hormone deprivation and D-galactose injection

Lei Liu et al. Int J Neuropsychopharmacol. 2012 Feb.
Free article

Abstract

Astrocyte dysfunction is implicated in pathogenesis of certain neurological disorders including Alzheimer's disease (AD). A growing body of evidence indicates that water channel aquaporin-4 (AQP4) is a potential molecular target for the regulation astrocyte function. Recently, we reported that AQP4 expression was increased in the hippocampus of an AD mouse model established by long-term ovarian hormone deprivation combined with D-galactose (D-gal) exposure. However, pathophysiological roles and mechanisms of AQP4 up-regulation remain unclear. To address this issue, age-matched female wild-type and AQP4 null mice underwent ovariectomy, followed by D-gal administration for 8 wk. AQP4 null mice showed more severe brain oxidative stress, spatial learning and memory deficits, and basal forebrain cholinergic impairment than the wild-type controls. Notably, AQP4 null hippocampus contained more prominent amyloid-β production and loss of synapse-related proteins. These results suggested that ovariectomy and D-gal injection induced oxidative damage results in compensatory increases of AQP4 expression, and deficiency of AQP4 exacerbates brain oxidative stress and memory deficits. Therefore, regulation of astrocyte function by AQP4 may attenuate oxidative damage, offering a promising therapeutic strategy for AD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources