Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution
- PMID: 21251164
- DOI: 10.1111/j.1365-2443.2010.01473.x
Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution
Abstract
The Keap1–Nrf2 regulatory pathway plays a central role in the protection of cells against oxidative and xenobiotic damage. Under unstressed conditions, Nrf2 is constantly ubiquitinated by the Cul3–Keap1 ubiquitin E3 ligase complex and rapidly degraded in proteasomes. Upon exposure to electrophilic and oxidative stresses, reactive cysteine residues of Keap1 become modified, leading to a decline in the E3 ligase activity, stabilization of Nrf2 and robust induction of a battery of cytoprotective genes. Biochemical and structural analyses have revealed that the intact Keap1 homodimer forms a cherry-bob structure in which one molecule of Nrf2 associates with two molecules of Keap1 by using two binding sites within the Neh2 domain of Nrf2. This two-site binding appears critical for Nrf2 ubiquitination. In many human cancers, missense mutations in KEAP1 and NRF2 genes have been identified. These mutations disrupt the Keap1–Nrf2 complex activity involved in ubiquitination and degradation of Nrf2 and result in constitutive activation of Nrf2. Elevated expression of Nrf2 target genes confers advantages in terms of stress resistance and cell proliferation in normal and cancer cells. Discovery and development of selective Nrf2 inhibitors should make a critical contribution to improved cancer therapy.
Similar articles
-
The Keap1-Nrf2 system as an in vivo sensor for electrophiles.Nitric Oxide. 2011 Aug 1;25(2):153-60. doi: 10.1016/j.niox.2011.02.007. Epub 2011 Mar 6. Nitric Oxide. 2011. PMID: 21385624
-
The Keap1-Nrf2 system and diabetes mellitus.Arch Biochem Biophys. 2015 Jan 15;566:76-84. doi: 10.1016/j.abb.2014.12.012. Epub 2014 Dec 17. Arch Biochem Biophys. 2015. PMID: 25528168 Review.
-
The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway.Mol Cell Biol. 2020 Jun 15;40(13):e00099-20. doi: 10.1128/MCB.00099-20. Print 2020 Jun 15. Mol Cell Biol. 2020. PMID: 32284348 Free PMC article. Review.
-
Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.Mol Cell Biol. 2004 Aug;24(16):7130-9. doi: 10.1128/MCB.24.16.7130-7139.2004. Mol Cell Biol. 2004. PMID: 15282312 Free PMC article.
-
Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.Mol Cell Biol. 2007 Sep;27(18):6334-49. doi: 10.1128/MCB.00630-07. Epub 2007 Jul 16. Mol Cell Biol. 2007. PMID: 17636022 Free PMC article.
Cited by
-
(E)-N-(2-(3, 5-Dimethoxystyryl) phenyl) furan-2-carboxamide (BK3C231) induces cytoprotection in CCD18-Co human colon fibroblast cells through Nrf2/ARE pathway activation.Sci Rep. 2021 Feb 26;11(1):4773. doi: 10.1038/s41598-021-83163-7. Sci Rep. 2021. PMID: 33637843 Free PMC article.
-
The effect of environmental chemicals on the tumor microenvironment.Carcinogenesis. 2015 Jun;36 Suppl 1(Suppl 1):S160-83. doi: 10.1093/carcin/bgv035. Carcinogenesis. 2015. PMID: 26106136 Free PMC article. Review.
-
Transcription factor Nrf2-mediated antioxidant defense system in the development of diabetic retinopathy.Invest Ophthalmol Vis Sci. 2013 Jun 6;54(6):3941-8. doi: 10.1167/iovs.13-11598. Invest Ophthalmol Vis Sci. 2013. PMID: 23633659 Free PMC article.
-
Potential Roles of Redox Dysregulation in the Development of Schizophrenia.Biol Psychiatry. 2020 Aug 15;88(4):326-336. doi: 10.1016/j.biopsych.2020.03.016. Epub 2020 Apr 2. Biol Psychiatry. 2020. PMID: 32560962 Free PMC article. Review.
-
Design, Synthesis, Characterization, and Crystal Structure Studies of Nrf2 Modulators for Inhibiting Cancer Cell Growth In Vitro and In Vivo.ACS Omega. 2021 Apr 9;6(15):10054-10071. doi: 10.1021/acsomega.0c06345. eCollection 2021 Apr 20. ACS Omega. 2021. PMID: 34056161 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources