Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb 15;50(6):989-1000.
doi: 10.1021/bi101795q. Epub 2011 Jan 20.

Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR

Affiliations

Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR

Marilú Pérez García et al. Biochemistry. .

Abstract

The polysaccharide-rich cell walls (CWs) of plants perform essential functions such as maintaining tensile strength and allowing plant growth. Using two- and three-dimensional magic-angle-spinning (MAS) solid-state NMR and uniformly (13)C-labeled Arabidopsis thaliana, we have assigned the resonances of the major polysaccharides in the intact and insoluble primary CW and determined the intermolecular contacts and dynamics of cellulose, hemicelluloses, and pectins. Cellulose microfibrils showed extensive interactions with pectins, while the main hemicellulose, xyloglucan, exhibited few cellulose cross-peaks, suggesting limited entrapment in the microfibrils rather than extensive surface coating. Site-resolved (13)C T(1) and (1)H T(1ρ) relaxation times indicate that the entrapped xyloglucan has motional properties that are intermediate between the rigid cellulose and the dynamic pectins. Xyloglucan absence in a triple knockout mutant caused the polysaccharides to undergo much faster motions than in the wild-type CW. These results suggest that load bearing in plant CWs is accomplished by a single network of all three types of polysaccharides instead of a cellulose-xyloglucan network, thus revising the existing paradigm of CW structure. The extensive pectin-cellulose interaction suggests a central role for pectins in maintaining the structure and function of plant CWs. This study demonstrates the power of multidimensional MAS NMR for molecular level investigation of the structure and dynamics of complex and energy-rich plant materials.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources