Targeted amino-terminal acetylation of recombinant proteins in E. coli
- PMID: 21203426
- PMCID: PMC3009751
- DOI: 10.1371/journal.pone.0015801
Targeted amino-terminal acetylation of recombinant proteins in E. coli
Abstract
One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co-expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method for the expression and purification of functional N-terminally acetylated eukaryotic proteins.
Conflict of interest statement
Figures



Similar articles
-
Production of amino-terminally acetylated recombinant proteins in E. coli.Methods Mol Biol. 2013;981:193-200. doi: 10.1007/978-1-62703-305-3_15. Methods Mol Biol. 2013. PMID: 23381863 Free PMC article.
-
Probing the interaction between NatA and the ribosome for co-translational protein acetylation.PLoS One. 2017 Oct 10;12(10):e0186278. doi: 10.1371/journal.pone.0186278. eCollection 2017. PLoS One. 2017. PMID: 29016658 Free PMC article.
-
Acetylation regulates tropomyosin function in the fission yeast Schizosaccharomyces pombe.J Cell Sci. 2007 May 1;120(Pt 9):1635-45. doi: 10.1242/jcs.001115. J Cell Sci. 2007. PMID: 17452625
-
N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins.J Mol Biol. 2003 Jan 24;325(4):595-622. doi: 10.1016/s0022-2836(02)01269-x. J Mol Biol. 2003. PMID: 12507466 Review.
-
Cyclin-dependent kinase inhibitors of Saccharomyces cerevisiae and Schizosaccharomyces pombe.Curr Top Microbiol Immunol. 1998;227:1-24. doi: 10.1007/978-3-642-71941-7_1. Curr Top Microbiol Immunol. 1998. PMID: 9479823 Review. No abstract available.
Cited by
-
Clustering of human prion protein and α-synuclein oligomers requires the prion protein N-terminus.Commun Biol. 2020 Jul 9;3(1):365. doi: 10.1038/s42003-020-1085-z. Commun Biol. 2020. PMID: 32647130 Free PMC article.
-
Lipid-Chaperone Hypothesis: A Common Molecular Mechanism of Membrane Disruption by Intrinsically Disordered Proteins.ACS Chem Neurosci. 2020 Dec 16;11(24):4336-4350. doi: 10.1021/acschemneuro.0c00588. Epub 2020 Dec 3. ACS Chem Neurosci. 2020. PMID: 33269918 Free PMC article.
-
Binding adaptability of chemical ligands to polymorphic α-synuclein amyloid fibrils.Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2321633121. doi: 10.1073/pnas.2321633121. Epub 2024 Aug 22. Proc Natl Acad Sci U S A. 2024. PMID: 39172784 Free PMC article.
-
N-Terminal acetylation is critical for forming α-helical oligomer of α-synuclein.Protein Sci. 2012 May;21(5):601-5. doi: 10.1002/pro.2056. Epub 2012 Mar 30. Protein Sci. 2012. PMID: 22407793 Free PMC article.
-
Altered conformation of α-synuclein drives dysfunction of synaptic vesicles in a synaptosomal model of Parkinson's disease.Cell Rep. 2021 Jul 6;36(1):109333. doi: 10.1016/j.celrep.2021.109333. Cell Rep. 2021. PMID: 34233191 Free PMC article.
References
-
- Groenen PJ, Merck KB, de Jong WW, Bloemendal H. Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem. 1994;225:1–19. - PubMed
-
- Wada M, Shirahata A. Identification of the primary structure and post-translational modification of rat S-adenosylmethionine decarboxylase. Biol Pharm Bull. 2010;33:891–894. - PubMed
-
- Kikuchi J, Iwafune Y, Akiyama T, Okayama A, Nakamura H, et al. Co- and post-translational modifications of the 26S proteasome in yeast. Proteomics. 2010;10:2769–2779. - PubMed
-
- Mannherz HG, Mazur AJ, Jockusch B. Repolymerization of actin from actin:thymosin beta4 complex induced by diaphanous related formins and gelsolin. Ann N Y Acad Sci. 2010;1194:36–43. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials