Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr 14;52(5):2437-43.
doi: 10.1167/iovs.10-5635.

TGF-β induces sustained upregulation of SNAI1 and SNAI2 through Smad and non-Smad pathways in a human corneal epithelial cell line

Affiliations

TGF-β induces sustained upregulation of SNAI1 and SNAI2 through Smad and non-Smad pathways in a human corneal epithelial cell line

Keiichi Aomatsu et al. Invest Ophthalmol Vis Sci. .

Abstract

Purpose: The aim of this study was to investigate the expression changes of epithelial mesenchymal transition (EMT)-related molecules induced by TGF-β signaling in a human corneal epithelial cell line (HCECs).

Methods: The cellular response to TGF-β was evaluated by immunoblotting, quantitative real-time RT-PCR, and immunofluorescence microscopy in HCECs.

Results: TGF-β significantly increased mRNA expression of SNAI1, SNAI2, VIM, and FN1, but not TWIST1 through Smad and non-Smad pathways in HCECs. Protein expression of a mesenchymal marker N-cadherin was dose-dependently increased and that of an epithelial marker of E-cadherin was decreased by TGF-β. TGF-β, but not EGF, mediated the EMT-like morphologic changes. Both TGF-β and EGF were capable of upregulating SNAI1 and SNAI2 by about two-fold within a short response time. However, a detailed time course analysis revealed drastically different expression patterns, with TGF-β mediating a sustained upregulation of SNAI1 and SNAI2 for at least for 6 days and EGF allowing a return to the baseline expression values after 8 ∼ 12 h. These data indicate that TGF-β, but not EGF, induces sustained upregulation of SNAI1 and SNAI2 in HCECs.

Conclusions: TGF-β induces sustained upregulation of SNAI1 and SNAI2 through Smad and non-Smad pathways, EMT-like morphologic changes, downregulation of E-cadherin, and upregulation of N-cadherin in HCECs. The authors' findings provide insight into the TGF-β signaling and the temporal expression patterns of EMT-inducible transcription factors in HCECs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources