Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 3;5(12):e14175.
doi: 10.1371/journal.pone.0014175.

Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol

Affiliations

Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol

Elin Thysell et al. PLoS One. .

Abstract

Background: Metastasis to the bone is one clinically important features of prostate cancer (PCa). Current diagnostic methods cannot predict metastatic PCa at a curable stage of the disease. Identification of metabolic pathways involved in the growth of bone metastases therefore has the potential to improve PCa prognostication as well as therapy.

Methodology/principal findings: Metabolomics was applied for the study of PCa bone metastases (n = 20) in comparison with corresponding normal bone (n = 14), and furthermore of malignant (n = 13) and benign (n = 17) prostate tissue and corresponding plasma samples obtained from patients with (n = 15) and without (n = 13) diagnosed metastases and from men with benign prostate disease (n = 30). This was done using gas chromatography-mass spectrometry for sample characterization, and chemometric bioinformatics for data analysis. Results were verified in a separate test set including metastatic and normal bone tissue from patients with other cancers (n = 7). Significant differences were found between PCa bone metastases, bone metastases of other cancers, and normal bone. Furthermore, we identified metabolites in primary tumor tissue and in plasma which were significantly associated with metastatic disease. Among the metabolites in PCa bone metastases especially cholesterol was noted. In a test set the mean cholesterol level in PCa bone metastases was 127.30 mg/g as compared to 81.06 and 35.85 mg/g in bone metastases of different origin and normal bone, respectively (P = 0.0002 and 0.001). Immunohistochemical staining of PCa bone metastases showed intense staining of the low density lipoprotein receptor and variable levels of the scavenger receptor class B type 1 and 3-hydroxy-3-methylglutaryl-coenzyme reductase in tumor epithelial cells, indicating possibilities for influx and de novo synthesis of cholesterol.

Conclusions/significance: We have identified metabolites associated with PCa metastasis and specifically identified high levels of cholesterol in PCa bone metastases. Based on our findings and the previous literature, this makes cholesterol a possible therapeutic target for advanced PCa.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Metabolite classification.
Identified metabolites are categorized according to chemical class and the number of metabolites per class significantly associated with metastasis is indicated (P<0.05, Mann Whitney U-test, or VIP>0.9). Classification of metabolites according to chemical class (human metabolome DB; www.hmdb.ca). n =  number of identified metabolites within each metabolite class.
Figure 2
Figure 2. Metabolic signature in prostate cancer bone metastases.
A) Correlation loadings (p[1]) from OPLS-DA analysis of the significantly differentiating metabolites (P<0.05, Mann Whitney U-test, or VIP>0.9) between prostate cancer bone metastases and normal bone showing positive values for metabolites with increased levels in bone metastases and negative values for metabolites with decreased levels in bone metastases. Classification of non-identified compounds according to chemical class (human metabolome DB; www.hmdb.ca) B) OPLS-DA score plot showing statistically significant separation (P<0.001) between normal bone and prostate cancer bone metastases. C) Test set predictions of prostate cancer bone metastases and corresponding normal bone samples (blind to the model) into the OPLS-DA model showing a clear discrimination between the sample classes based on the detected metabolomic signature.
Figure 3
Figure 3. Cholesterol levels and expression of enzymes for cholesterol influx and synthesis.
A. Box plot for cholesterol concentration (mg cholesterol/g tissue) showing significantly higher levels in prostate cancer (PCa) bone metastases compared to normal bone. B. Box plot for cholesterol concentration (mg cholesterol/g tissue) in test set showing significantly higher levels in PCa bone metastases compared to normal bone as well as compared to bone metastases from other cancers; breast, kidney, and squamous cancer (BCa, KCa and SCa). C–E. Immunohistochemical staining of the low density lipoprotein receptor (LDL-R), the scavenger receptor class B type 1 (SR-B1), and the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA red.) in PCa bone metastases showing intense staining and indicating possibilities for influx as well as de novo synthesis of cholesterol in tumor epithelial cells, as suggested in F. F. Cholesterol influx and synthesis is stimulated by androgen receptor (AR) action partly via activation of the sterol regulatory element-binding protein (SREBP) and subsequent transcription of LDL-R and HMG-CoA red , and androgens could be provided from cholesterol by its conversion in several steps , .

Similar articles

Cited by

References

    1. Catalona WJ, Partin AW, Slawin KM, Brawer MK, Flanigan RC, et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA. 1998;279:1542–1547. - PubMed
    1. Klotz L. Active surveillance versus radical treatment for favorable-risk localized prostate cancer. Curr Treat Options Oncol. 2006;7:355–362. - PubMed
    1. Lopergolo A, Zaffaroni N. Biomolecular markers of outcome prediction in prostate cancer. Cancer. 2009;115:3058–3067. - PubMed
    1. Parekh DJ, Ankerst DP, Troyer D, Srivastava S, Thompson IM. Biomarkers for prostate cancer detection. J Urol. 2007;178:2252–2259. - PubMed
    1. Fowler AH, Pappas AA, Holder JC, Finkbeiner AE, Dalrymple GV, et al. Differentiation of human prostate cancer from benign hypertrophy by in vitro 1H NMR. Magn Reson Med. 1992;25:140–147. - PubMed

Publication types