Characterization of selective TRPM8 ligands and their structure activity response (S.A.R) relationship
- PMID: 20816009
- DOI: 10.18433/j3n88n
Characterization of selective TRPM8 ligands and their structure activity response (S.A.R) relationship
Abstract
Purpose: Transient receptor potential melastatin-8 (TRPM8) is an ion channel expressed extensively in sensory nerves, human prostate and overexpressed in a variety of cancers including prostate, breast, lung, colon and skin melanomas. It is activated by innoxious cooling and chemical stimuli. TRPM8 activation by cooling or chemical agonists is reported to induce profound analgesia in neuropathic pain conditions. Known TRPM8 agonists like menthol and icilin cross-activate other thermo-TRP channels like TRPV3 and TRPA1 and mutually inhibit TRPM8. This limits the usefulness of menthol and icilin as TRPM8 ligands. Consequently, the identification of selective and potent ligands for TRPM8 is of high relevance both in basic research and for therapeutic applications. In the present investigation, a group of menthol derivates was characterized. These ligands are selective and potent agonists of TRPM8. Interestingly they do not activate other thermo-TRPs like TRPA1, TRPV1, TRPV2, TRPV3 and TRPV4. These ion channels are also nociceptors and target of many inflammatory mediators.
Methods: Investigations were performed in a recombinant system: Xenopus oocytes microinjected with cRNA of gene of interest were superfused with the test substances after initial responses of known standard agonists. Evoked currents were measured by two-electrode voltage clamp technique.
Results: The newly characterized ligands possess an up to six-fold higher potency (EC50 in low microM) and an up to two-fold increase in efficacy compared to the parent compound menthol. In addition, it is found that chemical derivatives of menthol like CPS-368, CPS-369, CPS-125, WS-5 and WS-12 are the most selective ligands for TRPM8. The enhanced activity and selectivity seems to be conferred by hexacyclic ring structure present in all ligands as substances like WS-23 which lack this functional group activate TRPM8 with much lower potency (EC50 in mM) and those with pentacyclcic ring structure (furanone compounds) are totally inactive.
Conclusion: The new substances activate TRPM8 with a higher potency, efficacy and specificity than menthol and will thus be of importance for the development of pharmacological agents suitable for treatment and diagnosis of certain cancers and as analgesics. STATEMENT OF NOVELTY: The new compounds have an unmatched specificity for TRPM8 ion channels with additional display of high potency and efficacy. Thus these substances are better pharmacological tools for TRPM8 characterization then known compounds and it is suggested that these menthol-derivates may serve as model substances for the development of TRPM8 ligands.
Similar articles
-
Modulation of thermoreceptor TRPM8 by cooling compounds.ACS Chem Neurosci. 2012 Apr 18;3(4):248-67. doi: 10.1021/cn300006u. Epub 2012 Feb 13. ACS Chem Neurosci. 2012. PMID: 22860192 Free PMC article. Review.
-
Menthol derivative WS-12 selectively activates transient receptor potential melastatin-8 (TRPM8) ion channels.Pak J Pharm Sci. 2008 Oct;21(4):370-8. Pak J Pharm Sci. 2008. PMID: 18930858
-
The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity.Mol Pain. 2010 Jan 21;6:4. doi: 10.1186/1744-8069-6-4. Mol Pain. 2010. PMID: 20092626 Free PMC article.
-
Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay.Br J Pharmacol. 2004 Feb;141(4):737-45. doi: 10.1038/sj.bjp.0705652. Epub 2004 Feb 2. Br J Pharmacol. 2004. PMID: 14757700 Free PMC article.
-
TRPM8 biology and medicinal chemistry.Curr Top Med Chem. 2011;11(17):2237-52. doi: 10.2174/156802611796904933. Curr Top Med Chem. 2011. PMID: 21671871 Review.
Cited by
-
Irritant-evoked reflex tachyarrhythmia in spontaneously hypertensive rats is reduced by inhalation of TRPM8 agonists l-menthol and WS-12.J Appl Physiol (1985). 2023 Feb 1;134(2):307-315. doi: 10.1152/japplphysiol.00495.2022. Epub 2023 Jan 5. J Appl Physiol (1985). 2023. PMID: 36603045 Free PMC article.
-
Human TRPM8 and TRPA1 pain channels, including a gene variant with increased sensitivity to agonists (TRPA1 R797T), exhibit differential regulation by SRC-tyrosine kinase inhibitor.Biosci Rep. 2014 Aug 6;34(4):e00131. doi: 10.1042/BSR20140061. Biosci Rep. 2014. PMID: 24975826 Free PMC article.
-
Modulation of thermoreceptor TRPM8 by cooling compounds.ACS Chem Neurosci. 2012 Apr 18;3(4):248-67. doi: 10.1021/cn300006u. Epub 2012 Feb 13. ACS Chem Neurosci. 2012. PMID: 22860192 Free PMC article. Review.
-
The Role and Function of TRPM8 in the Digestive System.Biomolecules. 2024 Jul 21;14(7):877. doi: 10.3390/biom14070877. Biomolecules. 2024. PMID: 39062591 Free PMC article. Review.
-
Molecular mechanism of TRP channels.Compr Physiol. 2013 Jan;3(1):221-42. doi: 10.1002/cphy.c120001. Compr Physiol. 2013. PMID: 23720286 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials