Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep;139(3):1041-51, 1051.e1-8.
doi: 10.1053/j.gastro.2010.05.084. Epub 2010 Jun 8.

CD10+ pancreatic stellate cells enhance the progression of pancreatic cancer

Affiliations

CD10+ pancreatic stellate cells enhance the progression of pancreatic cancer

Naoki Ikenaga et al. Gastroenterology. 2010 Sep.

Abstract

Background & aims: Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer by producing extracellular matrix and soluble factors. However, the functional heterogeneity of PSCs has not been identified until now. Detailed characterization of the PSCs in human pancreatic cancer would provide a set of potential targets for stroma-directed therapy.

Methods: We isolated PSCs from fresh pancreatic ductal adenocarcinoma tissue and sorted them by flow cytometry according to cell surface expression of CD10, which is a stromal prognostic marker for various tumors. We analyzed the functional differences between CD10(+) PSCs and CD10(-) PSCs.

Results: Immunohistochemical analysis showed that the frequency of CD10 expression by PSCs was markedly higher in tumor tissue than in normal tissue (33.7% vs 0%, respectively, P = .028). In pancreatic ductal adenocarcinoma, CD10 expression by PSCs was associated with positive nodal metastases (P = .011) and a shorter survival time (P < .001). In vitro coculture experiments showed that CD10(+) PSCs promoted the invasiveness of pancreatic cancer cell lines, SUIT-2 and Panc-1 cells more intensively than CD10(-) PSCs. CD10(+) PSCs significantly increased the tumor growth and invasiveness of SUIT-2 cells in a murine cotransplantation model. CD10(+) PSCs secreted higher levels of matrix metalloproteinase 3 than CD10(-) PSCs, and knockdown of matrix metalloproteinase 3 in cocultured PSCs reduced the invasion of SUIT-2 and Panc-1 cells.

Conclusions: CD10(+) PSCs enhance the progression of pancreatic cancer cells. CD10(+) PSCs may be a candidate for selective therapeutic targeting in the treatment of pancreatic cancer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources