Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Aug;52(8):712-22.
doi: 10.1111/j.1744-7909.2010.00975.x.

High temperature effects on electron and proton circuits of photosynthesis

Affiliations
Review

High temperature effects on electron and proton circuits of photosynthesis

Thomas D Sharkey et al. J Integr Plant Biol. 2010 Aug.

Abstract

Photosynthesis is sensitive to high temperature with reversible declines during moderate stress and irreversible damage with more severe stress. While many studies have focused on the irreversible damage, the reversible changes can tell how photosynthesis tolerates high temperature. Knowing how high temperature is tolerated could lead to ways of extending high temperature tolerance. New analytical methods have been used to probe electron and proton circuits of intact leaves at high temperature. Combined with previous work with isolated systems, it appears that there is a large change in redox distribution among thylakoid components. Photosystem I becomes more reduced but photosystem II and the stroma become more oxidized. Several lines of evidence support the existence of significant cyclic electron flow at high temperature. It is hypothesized that these changes allow for adenosine tri-phosphate homeostasis and maintenance of an energy gradient across the thylakoid membrane, helping to keep it from suffering irreversible damage at high temperature.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources