Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 15;202(4):524-32.
doi: 10.1086/654932.

Role played by the programmed death-1-programmed death ligand pathway during innate immunity against Mycobacterium tuberculosis

Affiliations

Role played by the programmed death-1-programmed death ligand pathway during innate immunity against Mycobacterium tuberculosis

Ivana B Alvarez et al. J Infect Dis. .

Abstract

Tuberculous pleurisy allows the study of specific cells at the site of Mycobacterium tuberculosis infection. Among pleural lymphocytes, natural killer (NK) cells are a major source of interferon gamma (IFN-gamma), and their functions are regulated by activating and inhibitory receptors. Programmed death-1 (PD-1), programmed death ligand 1 (PD-L1), and programmed death ligand 2 (PD-L2) are recognized inhibitory receptors in adaptive immunity, but their role during innate immunity remains poorly understood. We investigated the PD-1:PD-L1/PD-L2 pathway on NK cell effector functions in peripheral blood and pleural fluid from patients with tuberculosis. M. tuberculosis stimulation significantly up-regulated PD-1, PD-L1, and PD-L2 levels on NK cells. Interestingly, a direct correlation between PD-1 and IFN-gamma expression on NK cells was observed. Moreover, blockade of the PD-1 pathway markedly augmented lytic degranulation and IFN-gamma production of NK cells against M. tuberculosis. Furthermore, PD-1(+) NK cells displayed a diminished IFN-gamma mean fluorescence intensity, denoting the relevance of PD-1 on IFN-gamma regulation. Together, we described a novel inhibitory role played by PD-1:PD-L interactions in innate immunity in tuberculosis.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms