Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep;24(9):3522-35.
doi: 10.1096/fj.10-154997. Epub 2010 Apr 21.

Differential association modes of the thrombin receptor PAR1 with Galphai1, Galpha12, and beta-arrestin 1

Affiliations

Differential association modes of the thrombin receptor PAR1 with Galphai1, Galpha12, and beta-arrestin 1

Mohammed Akli Ayoub et al. FASEB J. 2010 Sep.

Abstract

Although many G protein-coupled receptors (GPCRs) are known to activate multiple signaling pathways by coupling to different types of G proteins or by promoting G protein-independent events, how this occurs remains unclear. Using bioluminescence resonance energy transfer and time-resolved fluorescence resonance energy transfer, we provide evidence for protease-activated receptor 1 (PAR(1)) forming preassembled complexes with Galphai1 but not Galpha12. PAR(1) activation appears to rapidly induce transient Galphai1 activation (t(1/2) = 4.13 s) but late and stable recruitment of Galpha12 (t(1/2) = 8.8 min) in parallel with beta-arrestin 1 (t(1/2) = 7.5 min). However, there is no significant difference in the potency of the agonist-dependent response between Galphai1, Galpha12, and beta-arrestin 1 (EC(50) values 0.48, 0.30, and 0.15 nM, respectively). Although it seems beta-arrestin 1 is recruited to preassembled PAR(1)-Galphai1 complexes, this appears unlikely with Galpha12, suggesting 2 distinct receptor populations. Of note, we observed a different Galpha12 association mode with other GPCRs, indicating that preassembly and association dynamics may be specific properties of a receptor-G protein pair. Furthermore, the Galpha C terminus appears to play different roles in the distinct association modes. Consequently, G protein preassembly or recruitment may constitute novel mechanisms for controlling the kinetics and multitude of GPCR signaling pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources