ClpX contributes to innate defense peptide resistance and virulence phenotypes of Bacillus anthracis
- PMID: 20375606
- PMCID: PMC2920483
- DOI: 10.1159/000225955
ClpX contributes to innate defense peptide resistance and virulence phenotypes of Bacillus anthracis
Abstract
Bacillus anthracis is a National Institute of Allergy and Infectious Diseases Category A priority pathogen and the causative agent of the deadly disease anthrax. We applied a transposon mutagenesis system to screen for novel chromosomally encoded B. anthracis virulence factors. This approach identified ClpX, the regulatory ATPase subunit of the ClpXP protease, as essential for both the hemolytic and proteolytic phenotypes surrounding colonies of B. anthracis grown on blood or casein agar media, respectively. Deletion of clpX attenuated lethality of B. anthracis Sterne in murine subcutaneous and inhalation infection models, and markedly reduced in vivo survival of the fully virulent B. anthracis Ames upon intraperitoneal challenge in guinea pigs. The extracellular proteolytic activity dependent upon ClpX function was linked to degradation of cathelicidin antimicrobial peptides, a front-line effector of innate host defense. B. anthracis lacking ClpX were rapidly killed by cathelicidin and alpha-defensin antimicrobial peptides and lysozyme in vitro. In turn, mice lacking cathelicidin proved hyper-susceptible to lethal infection with wild-type B. anthracis Sterne, confirming cathelicidin to be a critical element of innate defense against the pathogen. We conclude that ClpX is an important factor allowing B. anthracis to subvert host immune clearance mechanisms, and thus represents a novel therapeutic target for prevention or therapy of anthrax, a foremost biodefense concern.
Copyright 2009 S. Karger AG, Basel.
Figures
Similar articles
-
Transcriptional profiling of the clpX mutant in Bacillus anthracis reveals regulatory connection with the lrgAB operon.Microbiology (Reading). 2018 Apr;164(4):659-669. doi: 10.1099/mic.0.000628. Epub 2018 Feb 23. Microbiology (Reading). 2018. PMID: 29473820
-
Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice.Infect Immun. 2011 Aug;79(8):3012-9. doi: 10.1128/IAI.00205-11. Epub 2011 May 16. Infect Immun. 2011. PMID: 21576337 Free PMC article.
-
Novel role for the yceGH tellurite resistance genes in the pathogenesis of Bacillus anthracis.Infect Immun. 2014 Mar;82(3):1132-40. doi: 10.1128/IAI.01614-13. Epub 2013 Dec 23. Infect Immun. 2014. PMID: 24366250 Free PMC article.
-
Proteomic studies of Bacillus anthracis.Future Microbiol. 2009 Oct;4(8):983-98. doi: 10.2217/fmb.09.73. Future Microbiol. 2009. PMID: 19824790 Review.
-
Pathogenicity, population genetics and dissemination of Bacillus anthracis.Infect Genet Evol. 2018 Oct;64:115-125. doi: 10.1016/j.meegid.2018.06.024. Epub 2018 Jun 20. Infect Genet Evol. 2018. PMID: 29935338 Review.
Cited by
-
Identification of genetic loci that contribute to Campylobacter resistance to fowlicidin-1, a chicken host defense peptide.Front Cell Infect Microbiol. 2012 Mar 16;2:32. doi: 10.3389/fcimb.2012.00032. eCollection 2012. Front Cell Infect Microbiol. 2012. PMID: 22919624 Free PMC article.
-
The Bacillus cereus Group: Bacillus Species with Pathogenic Potential.Microbiol Spectr. 2019 May;7(3):10.1128/microbiolspec.gpp3-0032-2018. doi: 10.1128/microbiolspec.GPP3-0032-2018. Microbiol Spectr. 2019. PMID: 31111815 Free PMC article. Review.
-
Loss of the ClpXP Protease Leads to Decreased Resistance to Cell-Envelope Targeting Antimicrobials in Bacillus anthracis Sterne.Front Microbiol. 2021 Aug 23;12:719548. doi: 10.3389/fmicb.2021.719548. eCollection 2021. Front Microbiol. 2021. PMID: 34497598 Free PMC article.
-
Gausemycin A-Resistant Staphylococcus aureus Demonstrates Affected Cell Membrane and Cell Wall Homeostasis.Microorganisms. 2023 May 18;11(5):1330. doi: 10.3390/microorganisms11051330. Microorganisms. 2023. PMID: 37317304 Free PMC article.
-
Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections.Pathog Glob Health. 2016 Jun-Jul;110(4-5):137-47. doi: 10.1080/20477724.2016.1195036. Epub 2016 Jun 17. Pathog Glob Health. 2016. PMID: 27315342 Free PMC article. Review.
References
-
- Dixon TC, Meselson M, Guillemin J, Hanna PC. Anthrax. N Engl J Med. 1999;341:815–826. - PubMed
-
- Banks DJ, Ward SC, Bradley KA. New insights into the functions of anthrax toxin. Expert Rev Mol Med. 2006;8:1–18. - PubMed
-
- Ezzell JW, Welkos SL. The capsule of Bacillus anthracis, a review. J Appl Microbiol. 1999;87:250. - PubMed
-
- Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR, Holtzapple EK, Okstad OA, Helgason E, Rilstone J, Wu M, Kolonay JF, Beanan MJ, Dodson RJ, Brinkac LM, Gwinn M, DeBoy RT, Madpu R, Daugherty SC, Durkin AS, Haft DH, Nelson WC, Peterson JD, Pop M, Khouri HM, Radune D, Benton JL, Mahamoud Y, Jiang L, Hance IR, Weidman JF, Berry KJ, Plaut RD, Wolf AM, Watkins KL, Nierman WC, Hazen A, Cline R, Redmond C, Thwaite JE, White O, Salzberg SL, Thomason B, Friedlander AM, Koehler TM, Hanna PC, Kolsto AB, Fraser CM. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature. 2003;423:81–86. - PubMed
-
- Frees D, Savijoki K, Varmanen P, Ingmer H. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol. 2007;63:1285–1295. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical