Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar-Apr;52(5):401-9.
doi: 10.1016/j.pcad.2009.12.004.

Aldosterone: role in the cardiometabolic syndrome and resistant hypertension

Affiliations
Review

Aldosterone: role in the cardiometabolic syndrome and resistant hypertension

Adam Whaley-Connell et al. Prog Cardiovasc Dis. 2010 Mar-Apr.

Abstract

The prevalence of diabetes, hypertension, and cardiovascular disease (CVD) and chronic kidney disease (CKD) is increasing in concert with obesity. Insulin resistance, metabolic dyslipidemia, central obesity, albuminuria. and hypertension commonly cluster to comprise the cardiometabolic syndrome (CMS). Emerging evidence supports a shift in our understanding of the crucial role of elevated serum aldosterone in promoting insulin resistance and resistant hypertension. Aldosterone enhances tissue generation of oxygen free radicals and systemic inflammation. This increase in oxidative stress and inflammation, in turn, contributes to impaired insulin metabolic signaling, reduced endothelial-mediated vasorelaxation, and associated cardiovascular and renal structural and functional abnormalities. In this context, recent investigation indicates that hyperaldosteronism, which is often associated with obesity, contributes to impaired pancreatic beta-cell function as well as diminished skeletal muscle insulin metabolic signaling. Accumulating evidence indicates that the cardiovascular and renal abnormalities associated with insulin resistance are mediated, in part, by aldosterone's nongenomic as well as genomic signaling through the mineralocorticoid receptor (MR). In the CMS, there are increased circulating levels of glucocorticoids, which can also activate MR signaling in cardiovascular, adipose, skeletal muscle, neuronal, and liver tissue. Furthermore, there is increasing evidence that fat tissue produces a lipid soluble factor that stimulates aldosterone production from the adrenal zona glomerulosa. Recently, we have learned that MR blockade improves pancreatic insulin release, insulin-mediated glucose utilization, and endothelium-dependent vasorelaxation as well as reduces the progression of CVD and CKD. In summary, aldosterone excess exerts detrimental metabolic effects that contribute to the development of the CMS and resistant hypertension as well as CVD and CKD.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ginsberg HN, MacCallum PR. The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: Part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus. J Cardiometab Syndr. 2009;4(2):113–9. - PMC - PubMed
    1. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The Metabolic Syndrome: prevalence and associated risk factor findings in the US Population from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch Intern Med. 2003;163:427–436. - PMC - PubMed
    1. Malik S, Wong ND, Franklin SS, Kamath TV, L'Italien GJ, Pio JR, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004;110(10):1245–50. - PubMed
    1. Manrique C, Lastra G, Whaley-Connell A, Sowers JR. Hypertension and the cardiometabolic syndrome. J Clin Hypertens (Greenwich) 2005;7:471–476. - PMC - PubMed
    1. Sowers JR. Obesity as a cardiovascular risk factor. Am J Med. 2003;115(Supp 8A):37S–41S. - PubMed

Publication types

MeSH terms

Substances