Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar 8;188(5):621-8.
doi: 10.1083/jcb.200910001.

The Golgi and the centrosome: building a functional partnership

Affiliations
Review

The Golgi and the centrosome: building a functional partnership

Christine Sütterlin et al. J Cell Biol. .

Abstract

The mammalian Golgi apparatus is characterized by a ribbon-like organization adjacent to the centrosome during interphase and extensive fragmentation and dispersal away from the centrosome during mitosis. It is not clear whether this dynamic association between the Golgi and centrosome is of functional significance. We discuss recent findings indicating that the Golgi-centrosome relationship may be important for directional protein transport and centrosome positioning, which are both required for cell polarization. We also summarize our current knowledge of the link between Golgi organization and cell cycle progression.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
The spatial relationship between the Golgi and the centrosome during the mammalian cell cycle. Golgi (red, stained with antibodies to GM130) and centrosome (green, stained with antibodies to centrin) staining of nonsynchronized bone cancer cells (U2-OS) shows the physical proximity between these two organelles during interphase (left) and its temporary loss during mitosis (right). Bar, 10 µm.
Figure 2.
Figure 2.
Golgi- and centrosome-nucleated microtubules in cell migration. The centrosome nucleates a radial array of microtubules (red) whose minus ends (−) are anchored at the centrosome and whose plus ends (+) extend into the cell periphery. This population of microtubules depends on γ-TuRC complexes and the large scaffold protein AKAP450 for their nucleation and functions in maintaining the pericentriolar localization of the Golgi ribbon by a dynein-mediated mechanism (closed arrows). In contrast, the Golgi apparatus nucleates microtubules (brown) that extend asymmetrically toward the leading edge of a migrating cell. Microtubule nucleation at the Golgi requires the peripheral Golgi protein GM130, which recruits AKAP450 and γ-TuRC complexes to the Golgi apparatus. Golgi-nucleated microtubules are coated with CLASP proteins and are necessary for the formation of the Golgi ribbon from dispersed stacks. In addition, they are required for cell migration by facilitating polarized protein transport to the leading edge of a cell (open arrows).
Figure 3.
Figure 3.
Golgi fragmentation during mitosis. The mammalian Golgi apparatus (green) forms an interconnected ribbon adjacent to the centrosome (red) and the nucleus (blue). It nucleates a population of microtubules that is necessary for polarized protein transport. Plus (+) and minus ends (−) are indicated. The activities of the protein kinases Plk3 and MEK1 and the fission protein BARS are required to convert the ribbon structure into isolated stacks in late G2 and prophase. In metaphase, the isolated stacks are further fragmented by a Plk1- and Cdk1-dependent mechanism, producing vesicular/tubular membranes that are dispersed throughout the cytoplasm. During this process, ribbon determinants, which are proteins required for postmitotic Golgi ribbon formation, remain associated with the mitotic spindle for their partitioning into daughter cells. Centrosome-associated regulators of mitotic Golgi fragmentation are labeled in red. Regulators of Golgi fragmentation that are not associated with the centrosome are labeled in black.

Similar articles

Cited by

References

    1. Altan-Bonnet N., Sougrat R., Liu W., Snapp E.L., Ward T., Lippincott-Schwartz J. 2006. Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities. Mol. Biol. Cell. 17:990–1005 10.1091/mbc.E05-02-0155 - DOI - PMC - PubMed
    1. Bailly E., Dorée M., Nurse P., Bornens M. 1989. p34cdc2 is located in both nucleus and cytoplasm; part is centrosomally associated at G2/M and enters vesicles at anaphase. EMBO J. 8:3985–3995 - PMC - PubMed
    1. Ramirez I.B., Lowe M. 2009. Golgins and GRASPs: holding the Golgi together. Semin. Cell Dev. Biol. 20:770–779 10.1016/j.semcdb.2009.03.011 - DOI - PubMed
    1. Bejarano E., Cabrera M., Vega L., Hidalgo J., Velasco A. 2006. Golgi structural stability and biogenesis depend on associated PKA activity. J. Cell Sci. 119:3764–3775 10.1242/jcs.03146 - DOI - PubMed
    1. Bettencourt-Dias M., Glover D.M. 2007. Centrosome biogenesis and function: centrosomics brings new understanding. Nat. Rev. Mol. Cell Biol. 8:451–463 10.1038/nrm2180 - DOI - PubMed

Publication types