Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 1;44(7):2441-6.
doi: 10.1021/es9033342.

Estimation and congener-specific characterization of polychlorinated naphthalene emissions from secondary nonferrous metallurgical facilities in China

Affiliations
Free article

Estimation and congener-specific characterization of polychlorinated naphthalene emissions from secondary nonferrous metallurgical facilities in China

Te Ba et al. Environ Sci Technol. .
Free article

Abstract

Secondary nonferrous production is addressed as one of the potential sources of the unintentionally produced persistent organic pollutants (UP-POPs) due to the impurity of raw material. Although there are inventories of dioxin emissions from secondary nonferrous metallurgical facilities, release inventories of polychlorinated naphthalenes (PCNs) are scarce. This study selected typical secondary copper, aluminum, zinc, and lead plants to investigate the emissions of PCNs in secondary nonferrous production in China. The toxic equivalency (TEQ) emission factor for PCNs released to the environment is highest for secondary copper production, at 428.4 ng TEQ t(-1), followed by secondary aluminum, zinc, and lead production, at 142.8, 125.7, and 20.1 ng TEQ t(-1), respectively. PCNs released in secondary copper, aluminum, lead, and zinc production in China are estimated to be 0.86, 0.39, 0.009, and 0.01 g TEQ a(-1), respectively. Analysis of stack gas emission from secondary nonferrous production revealed that less-chlorinated PCNs are the dominant homologues, with mono- to tri-CNs making the most important contributions to the concentration. However, for fly ash, the more highly chlorinated PCNs such as octa-CN are the dominant homologues.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources