Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar;10(2):142-65.
doi: 10.2174/156652410790963295.

Circulating nucleic acids as a potential source for cancer biomarkers

Affiliations
Review

Circulating nucleic acids as a potential source for cancer biomarkers

V V Vlassov et al. Curr Mol Med. 2010 Mar.

Abstract

Since the association of circulating DNA level changes with tumor growth was discovered many attempts have been made to develop the sensitive and robust blood-based tests for early tumor diagnostics. Both genomic as well as mitochondrial DNA quantification in the circulation have been extensively evaluated as a diagnostic and prognostic tool to monitor cancer therapy. Cell-free DNA bearing the same genetic and epigenetic changes as the tumor tissues were shown to be detectable in plasma / serum of cancer patients indicating the principal possibility to create the minimally invasive diagnostic tests based on tumor-specific DNA markers. Apart from circulating DNA, tumor-derived RNA in plasma / serum was found to be a promising approach for the development of cancer markers. Results of the last two years establish the quantification of the tumor-derived microRNAs in plasma / serum as an extremely promising approach for cancer diagnostics. The aim of this publication was to review the recently reported studies on the circulating DNA and RNA in cancer patients and to estimate their impact on making the ongoing research closer to clinical application.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources