Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Feb 15;98(2):177-83.
doi: 10.1016/0378-1119(91)90171-7.

Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide

Affiliations

Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide

D C Tessier et al. Gene. .

Abstract

The baculovirus/insect cell system has been remarkably successful in yielding high levels of synthesis of many proteins which have been difficult to synthesize in other host/vector systems. The system is also capable of secreting heterologous proteins, but with generally low efficiency. We have increased the efficiency of secretion of the system by using signal peptides of insect origin to direct the secretion of a foreign protein. The precursor of the plant cysteine protease papain (propapain) has been used as a report enzyme to compare secretion efficiency. Insect cells infected with a baculovirus recombined with the gene encoding propapain fused to the sequence encoding the honeybee melittin signal peptide secreted over five times more papain precursor than the wild-type prepropapain which used the plant signal peptide. Based on these results, we have assembled pVT-Bac, an Autographa californica nuclear polyhedrosis virus transfer vector that may enhance secretion of other foreign proteins from insect cells. The vector incorporates a number of features: phage f1 ori to facilitate site-directed mutagenesis, the strong polyhedrin promoter upstream from the melittin signal peptide-encoding sequence, and eight unique restriction sites to facilitate fusion of heterologous genes.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources