A mouse model of lethal infection for evaluating prophylactics and therapeutics against Monkeypox virus
- PMID: 20130052
- PMCID: PMC2849515
- DOI: 10.1128/JVI.02012-09
A mouse model of lethal infection for evaluating prophylactics and therapeutics against Monkeypox virus
Abstract
Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola, the etiological agent of smallpox. In humans, MPXV causes a disease similar to smallpox and is considered to be an emerging infectious disease. Moreover, the use of MPXV for bioterroristic/biowarfare activities is of significant concern. Available small animal models of human monkeypox have been restricted to mammals with poorly defined biologies that also have limited reagent availability. We have established a murine MPXV model utilizing the STAT1-deficient C57BL/6 mouse. Here we report that a relatively low-dose intranasal (IN) infection induces 100% mortality in the stat1(-)(/)(-) model by day 10 postinfection with high infectious titers in the livers, spleens, and lungs of moribund animals. Vaccination with modified vaccinia virus Ankara (MVA) followed by a booster vaccination is sufficient to protect against an intranasal MPXV challenge and induces an immune response more robust than that of a single vaccination. Furthermore, antiviral treatment with CMX001 (HDP-cidofovir) and ST-246 protects when administered as a regimen initiated on the day of infection. Thus, the stat1(-)(/)(-) model provides a lethal murine platform for evaluating therapeutics and for investigating the immunological and pathological responses to MPXV infection.
Figures






Similar articles
-
Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection.Nature. 2006 Feb 9;439(7077):745-8. doi: 10.1038/nature04295. Epub 2005 Dec 11. Nature. 2006. PMID: 16341204
-
Experimental infection of an African dormouse (Graphiurus kelleni) with monkeypox virus.Virology. 2009 Jan 5;383(1):86-92. doi: 10.1016/j.virol.2008.09.025. Epub 2008 Nov 1. Virology. 2009. PMID: 18977501 Free PMC article.
-
Identification of wild-derived inbred mouse strains highly susceptible to monkeypox virus infection for use as small animal models.J Virol. 2010 Aug;84(16):8172-80. doi: 10.1128/JVI.00621-10. Epub 2010 Jun 2. J Virol. 2010. PMID: 20519404 Free PMC article.
-
Treatment and Vaccination for Smallpox and Monkeypox.Adv Exp Med Biol. 2024;1451:301-316. doi: 10.1007/978-3-031-57165-7_19. Adv Exp Med Biol. 2024. PMID: 38801586 Review.
-
Efficacy of CMX001 as a prophylactic and presymptomatic antiviral agent in New Zealand white rabbits infected with rabbitpox virus, a model for orthopoxvirus infections of humans.Viruses. 2011 Feb;3(2):63-82. doi: 10.3390/v3020063. Viruses. 2011. PMID: 21369346 Free PMC article. Review.
Cited by
-
Monkeypox: epidemiology, pathogenesis, treatment and prevention.Signal Transduct Target Ther. 2022 Nov 2;7(1):373. doi: 10.1038/s41392-022-01215-4. Signal Transduct Target Ther. 2022. PMID: 36319633 Free PMC article. Review.
-
Polycyclic N-benzamido imides with potent activity against vaccinia virus.ChemMedChem. 2010 Dec 3;5(12):2072-8. doi: 10.1002/cmdc.201000306. ChemMedChem. 2010. PMID: 20967819 Free PMC article.
-
Therapeutic strategies to address monkeypox.Expert Rev Anti Infect Ther. 2022 Oct;20(10):1249-1252. doi: 10.1080/14787210.2022.2113058. Epub 2022 Aug 17. Expert Rev Anti Infect Ther. 2022. PMID: 35953443 Free PMC article.
-
Ectromelia virus infections of mice as a model to support the licensure of anti-orthopoxvirus therapeutics.Viruses. 2010 Sep;2(9):1918-1932. doi: 10.3390/v2091918. Epub 2010 Sep 3. Viruses. 2010. PMID: 21994714 Free PMC article.
-
TLR3 and TLR9 agonists improve postexposure vaccination efficacy of live smallpox vaccines.PLoS One. 2014 Oct 28;9(10):e110545. doi: 10.1371/journal.pone.0110545. eCollection 2014. PLoS One. 2014. PMID: 25350003 Free PMC article.
References
-
- Boehm, U., T. Klamp, M. Groot, and J. C. Howard. 1997. Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15:749-795. - PubMed
-
- Brandt, T., M. C. Heck, S. Vijaysri, G. M. Jentarra, J. M. Cameron, and B. L. Jacobs. 2005. The N-terminal domain of the vaccinia virus E3L-protein is required for neurovirulence, but not induction of a protective immune response. Virology 333:263-270. - PubMed
-
- Buller, R. M., G. Owens, J. Schriewer, L. Melman, J. R. Beadle, and K. Y. Hostetler. 2004. Efficacy of oral active ether lipid analogs of cidofovir in a lethal mousepox model. Virology 318:474-481. - PubMed
-
- Chapgier, A., S. Boisson-Dupuis, E. Jouanguy, G. Vogt, J. Feinberg, A. Prochnicka-Chalufour, A. Casrouge, K. Yang, C. Soudais, C. Fieschi, O. F. Santos, J. Bustamante, C. Picard, L. de Beaucoudrey, J. F. Emile, P. D. Arkwright, R. D. Schreiber, C. Rolinck-Werninghaus, A. Rosen-Wolff, K. Magdorf, J. Roesler, and J. L. Casanova. 2006. Novel STAT1 alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet. 2:e131. - PMC - PubMed
-
- Chapgier, A., R. F. Wynn, E. Jouanguy, O. Filipe-Santos, S. Zhang, J. Feinberg, K. Hawkins, J. L. Casanova, and P. D. Arkwright. 2006. Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low virulence viruses in vivo. J. Immunol. 176:5078-5083. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous