Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Feb;30(2):144-50.
doi: 10.1161/ATVBAHA.109.196170.

Signaling by the high-affinity HDL receptor scavenger receptor B type I

Affiliations
Review

Signaling by the high-affinity HDL receptor scavenger receptor B type I

Sonika Saddar et al. Arterioscler Thromb Vasc Biol. 2010 Feb.

Erratum in

  • Arterioscler Thromb Vasc Biol. 2010 Sep;30(9):e173

Abstract

Scavenger receptor B type I (SR-BI) plays an important role in mediating cholesterol exchange between cells, high-density lipoprotein (HDL) cholesterol, and other lipoproteins. SR-BI in hepatocytes is essential for reverse cholesterol transport and biliary secretion of HDL cholesterol; thus, it is atheroprotective. More recently, it has been discovered that the HDL-SR-BI tandem serves other functions that also likely contribute to HDL-related cardiovascular protection. A number of the latter mechanisms, particularly in endothelial cells, involve unique direct signal initiation by SR-BI that leads to the activation of diverse kinase cascades. SR-BI signaling occurs in response to plasma membrane cholesterol flux. It requires the C-terminal PDZ-interacting domain of the receptor, which mediates direct interaction with the adaptor molecule PDZK1; and the C-terminal transmembrane domain, which directly binds membrane cholesterol. In endothelium, direct SR-BI signaling in response to HDL results in enhanced production of the antiatherogenic molecule nitric oxide; in a nitric oxide-independent manner, it serves to maintain endothelial monolayer integrity. The role of SR-BI signaling in the numerous other cellular targets of HDL, including hepatocytes, macrophages, and platelets, and the basis by which SR-BI senses plasma membrane cholesterol movement to modify cell behavior are unknown. Further understanding of signaling by SR-BI will optimize the capacity to harness the mechanisms of action of HDL-SR-BI for cardiovascular benefit.

PubMed Disclaimer

Similar articles

Cited by