Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 13:11:24.
doi: 10.1186/1471-2105-11-24.

ETE: a python Environment for Tree Exploration

Affiliations

ETE: a python Environment for Tree Exploration

Jaime Huerta-Cepas et al. BMC Bioinformatics. .

Abstract

Background: Many bioinformatics analyses, ranging from gene clustering to phylogenetics, produce hierarchical trees as their main result. These are used to represent the relationships among different biological entities, thus facilitating their analysis and interpretation. A number of standalone programs are available that focus on tree visualization or that perform specific analyses on them. However, such applications are rarely suitable for large-scale surveys, in which a higher level of automation is required. Currently, many genome-wide analyses rely on tree-like data representation and hence there is a growing need for scalable tools to handle tree structures at large scale.

Results: Here we present the Environment for Tree Exploration (ETE), a python programming toolkit that assists in the automated manipulation, analysis and visualization of hierarchical trees. ETE libraries provide a broad set of tree handling options as well as specific methods to analyze phylogenetic and clustering trees. Among other features, ETE allows for the independent analysis of tree partitions, has support for the extended newick format, provides an integrated node annotation system and permits to link trees to external data such as multiple sequence alignments or numerical arrays. In addition, ETE implements a number of built-in analytical tools, including phylogeny-based orthology prediction and cluster validation techniques. Finally, ETE's programmable tree drawing engine can be used to automate the graphical rendering of trees with customized node-specific visualizations.

Conclusions: ETE provides a complete set of methods to manipulate tree data structures that extends current functionality in other bioinformatic toolkits of a more general purpose. ETE is free software and can be downloaded from http://ete.cgenomics.org.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Screenshot of a reconciled phylogenetic tree displayed with ETE. The image shows a portion of a reconciled tree generated using the ETE's strict reconciliation algorithm over an example gene phylogeny. The most accepted tree of life for the species considered was used for reconciliation. A custom ETE layout function has been used to highlight different aspects of the tree: Grey dashed lines represent the inferred gene losses. Blue nodes indicate duplication events. Red nodes represent speciation events. Each OTU is displayed with their corresponding name and species image. Part of the multiple sequence alignment is displayed with each sequence associated to its corresponding OTU.
Figure 2
Figure 2
Screenshot of a microarray clustering tree validated and displayed with ETE. Expression profiles of terminal nodes (genes) are shown as a heatmap at the right side of the image. Silhouette indexes were calculated for each internal partition and are displayed in the tree. Size of green and red bubbles is proportional to the silhouette value. Red bubbles stand for silhouette values lower than 0 and green bubbles for silhouettes higher than 0. Two graphs representing the mean expression profile of the two most basal tree branches are also included in the image.

Similar articles

Cited by

References

    1. Page RD. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996;12(4):357–358. - PubMed
    1. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95(25):14863–14868. doi: 10.1073/pnas.95.25.14863. - DOI - PMC - PubMed
    1. Zmasek CM, Eddy SR. ATV: display and manipulation of annotated phylogenetic trees. Bioinformatics. 2001;17(4):383–384. doi: 10.1093/bioinformatics/17.4.383. - DOI - PubMed
    1. Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 2008;9(4):299–306. doi: 10.1093/bib/bbn017. - DOI - PMC - PubMed
    1. Santamaría R, Therón R. Treevolution: visual analysis of phylogenetic trees. Bioinformatics. 2009;25(15):1970–1971. doi: 10.1093/bioinformatics/btp333. - DOI - PubMed

Publication types

LinkOut - more resources