Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec 15;183(12):8167-75.
doi: 10.4049/jimmunol.0901126.

Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice

Affiliations

Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice

Christian Erbel et al. J Immunol. .

Abstract

The importance of an (auto)immune response in atherogenesis is becoming increasingly well understood. IL-17A-expressing T cells modulate immune cell trafficking, initiating inflammation and cytokine production in (auto)immune diseases. In human carotid artery plaques, we previously showed the presence of IL-17A-producing T cells and IL-23; however, IL-17A effects on atherogenesis have not been studied. Aortic root sections from 8-wk-old apolipoprotein E-deficient mice fed a standard chow diet were examined after 12 wk for lesion area, plaque composition, cellular infiltration, cytokine expression, and apoptosis. The treatment group (n = 15) received anti-IL-17A Ab and the controls (n = 10) received irrelevant Abs. Inhibition of IL-17A markedly reduced atherosclerotic lesion area (p < 0.001), maximal stenosis (p < 0.001), and vulnerability of the lesion. IL-17A mAb-treated mice showed reduced cellular infiltration, down-regulation of activation markers on endothelium and immune cells (e.g., VCAM-1), and reduced cytokine/chemokine secretion (e.g., IL6, TNFalpha, CCL5). To investigate possible mechanisms, different atherogenic cell types (e.g., macrophages, dendritic cells, HUVECs, vascular smooth muscle cells) were stimulated with IL-17A in addition to TNF-alpha, IFN-gamma, or LPS to induce cellular activation or apoptosis in vitro. Stimulation with IL-17A induced proinflammatory changes in several atherogenic cell types and apoptotic cell death in murine cells. Functional blockade of IL-17A reduces atherosclerotic lesion development and decreases plaque vulnerability, cellular infiltration, and tissue activation in apolipoprotein E-deficient mice. The present data support a pathogenic role of IL-17A in the development of atherosclerosis by way of its widespread proinflammatory and proapoptotic effects on atherogenic cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources