Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov 20:9:180.
doi: 10.1186/1471-2334-9-180.

The risks of malaria infection in Kenya in 2009

Affiliations

The risks of malaria infection in Kenya in 2009

Abdisalan M Noor et al. BMC Infect Dis. .

Abstract

Background: To design an effective strategy for the control of malaria requires a map of infection and disease risks to select appropriate suites of interventions. Advances in model based geo-statistics and malaria parasite prevalence data assemblies provide unique opportunities to redefine national Plasmodium falciparum risk distributions. Here we present a new map of malaria risk for Kenya in 2009.

Methods: Plasmodium falciparum parasite rate data were assembled from cross-sectional community based surveys undertaken from 1975 to 2009. Details recorded for each survey included the month and year of the survey, sample size, positivity and the age ranges of sampled population. Data were corrected to a standard age-range of two to less than 10 years (PfPR2-10) and each survey location was geo-positioned using national and on-line digital settlement maps. Ecological and climate covariates were matched to each PfPR2-10 survey location and examined separately and in combination for relationships to PfPR2-10. Significant covariates were then included in a Bayesian geostatistical spatial-temporal framework to predict continuous and categorical maps of mean PfPR2-10 at a 1 x 1 km resolution across Kenya for the year 2009. Model hold-out data were used to test the predictive accuracy of the mapped surfaces and distributions of the posterior uncertainty were mapped.

Results: A total of 2,682 estimates of PfPR2-10 from surveys undertaken at 2,095 sites between 1975 and 2009 were selected for inclusion in the geo-statistical modeling. The covariates selected for prediction were urbanization; maximum temperature; precipitation; enhanced vegetation index; and distance to main water bodies. The final Bayesian geo-statistical model had a high predictive accuracy with mean error of -0.15% PfPR2-10; mean absolute error of 0.38% PfPR2-10; and linear correlation between observed and predicted PfPR2-10 of 0.81. The majority of Kenya's 2009 population (35.2 million, 86.3%) reside in areas where predicted PfPR2-10 is less than 5%; conversely in 2009 only 4.3 million people (10.6%) lived in areas where PfPR2-10 was predicted to be > or =40% and were largely located around the shores of Lake Victoria.

Conclusion: Model based geo-statistical methods can be used to interpolate malaria risks in Kenya with precision and our model shows that the majority of Kenyans live in areas of very low P. falciparum risk. As malaria interventions go to scale effectively tracking epidemiological changes of risk demands a rigorous effort to document infection prevalence in time and space to remodel risks and redefine intervention priorities over the next 10-15 years.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Province map of Kenya showing the distribution of 2,095 spatially unique survey locations out of the 2,682 selected for analysis. Colours ranging from light pink to dark red represent increasing PfPR2-10. Where there were repeat surveys at the same location (n = 587), PfPR2-10 data are displayed from the most recent survey. CE = Central province; CO = Coast province; EA = Eastern province; NA = Nairobi province; NE = North Eastern province; NY = Nyanza province; RV = Rift Valley province; and WE = Western province.
Figure 2
Figure 2
Sample semi-variograms of PfPR2-10 dataset (n = 2,682) indicating the presence of spatial autocorrelation in the PfPR2-10 data up to lags of 1 decimal degree or the equivalent of ~111 km at the equator.
Figure 3
Figure 3
Spatial distribution of P. falciparum malaria in Kenya at 1×1 km spatial resolution. a) continuous posterior mean PfPR2-10 prediction; b) endemicity classes: PfPR2-10 < 0.1%; ≥0.1 and < 1%; ≥1 and <5%; ≥5 and <10%; ≥10 and <20%; ≥20 and <40%; ≥40%.
Figure 4
Figure 4
Scatter plot of actual versus predicted point-values of PfPR2-10 for the selection validation set (n = 210). The linear correlation (R) of the actual versus predicted PfPR2-10 was 0.81. The solid black line shows the line of perfect fit; the dashed black line is the trend line with intercept set at zero.
Figure 5
Figure 5
Spatial distribution of probability of membership of P. falciparum malaria endemicity class in Kenya at 1 × 1 km spatial resolution. Given that there are seven endemicity classes, the lowest probability of class assignment is 0.14. Any value above 0.14 is better than a chance allocation to the endemicity class. Lines shown on the map represent the contours of the different endemicity classes shown in Figure 3.

Similar articles

Cited by

References

    1. RBM. The global malaria action plan. Roll Back Malaria partnership. Geneva: World Health Organization; 2008.
    1. Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009;6:e1000048. - PMC - PubMed
    1. Butler RJ. Atlas of Kenya: A comprehensive series of new and authenticated maps prepared from the national survey and other government sources with gazetteer and notes on pronunciation and spelling. Nairobi, Kenya, the Survey of Kenya. 1959.
    1. Craig MH, Snow RW, le Sueur D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999;15:105–111. doi: 10.1016/S0169-4758(99)01396-4. - DOI - PubMed
    1. Omumbo J, Hay S, Goetz S, Snow R, Rogers D. Updating historical maps of malaria transmission intensity in East Africa using remote sensing. Photogramm Eng and Remote Sens. 2002;68:161–166. - PMC - PubMed

Publication types