Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan;100(1):38-46.
doi: 10.1016/0016-5085(91)90580-e.

Exogenous surface-active phospholipid protects Necturus gastric mucosa against luminal acid and barrier-breaking agents

Affiliations

Exogenous surface-active phospholipid protects Necturus gastric mucosa against luminal acid and barrier-breaking agents

T Kiviluoto et al. Gastroenterology. 1991 Jan.

Abstract

The nature of the protective action of exogenous surface-active phospholipid on gastric mucosa was studied in isolated Necturus antral mucosa by measuring intracellular pH and intraepithelial potentials and resistances with a microelectrode technique. Exposure of the antral mucosa to luminal pH 2 acidified intracellular pH in surface epithelial cells by 0.6-0.3 pH units. A 20-minute pretreatment with exogenous (pulmonary) surfactanlike phospholipid completely abolished this effect. Obviously, phospholipid protected the mucosa against intracellular acidosis by decreasing the apical cell membrane conductance to H+ (and other ions), because it increased apical cell membrane resistance by +108% and total transcellular resistance by +86% but had no significant effects on paracellular or total transepithelial resistances. In mucosas exposed to three barrier-breaking agents, 10 mmol/L acetylsalicylic acid, 20% (vol/vol) ethanol, and 10 mmol/L taurocholate, at acid luminal perfusate (pH 2.0-2.5), a profound intracellular acidification of 0.9-1.3 pH units/15 min occurred. Pretreatment of the tissue with phospholipid significantly opposed intracellular acidification, but the modulatory influences on the changes in intraepithelial potentials or resistances were less conspicuous and mostly insignificant.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources