Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jan;300(1):41-8.
doi: 10.1016/j.ijmm.2009.08.008. Epub 2009 Sep 23.

The role of innate signaling in the homeostasis of tolerance and immunity in the intestine

Affiliations
Review

The role of innate signaling in the homeostasis of tolerance and immunity in the intestine

Jerry M Wells et al. Int J Med Microbiol. 2010 Jan.

Abstract

In the intestine innate recognition of microbes is achieved through pattern recognition receptor (PRR) families expressed in immune cells and different cell lineages of the intestinal epithelium. Toll-like receptor (TLR) and nucleotide-binding and oligomerization domain-like receptor (NLR) families are emerging as key mediators of immunity through their role as maturation factors of immune cells and triggers for the production of cytokines and chemokines and antimicrobial factors. At the mucosal surface chronic activation of the immune system is avoided through the epithelial production of a glycocalyx, steady-state production of antimicrobial factors as well as the selective expression and localization of PRRs. Additionally, the polarization of epithelial TLR signaling and suppression of NF-kappaB activation by luminal commensals appears to contribute to the homeostasis of tolerance and immunity. Several studies have demonstrated that TLR signaling in epithelial cells contributes to a range of homeostatic mechanisms including proliferation, wound healing, epithelial integrity, and regulation of mucosal immune functions. The intestinal epithelium appears to have uniquely evolved to maintain mucosal tolerance and immunity, and future efforts to further understand the molecular mechanisms of intestinal homeostasis may have a major impact on human health.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources